HEWLETT %PACKARD

Computer Systems

COMMUNIGATOE

issue no. 16

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

Remember LOCUS (Library of Contributed User Software). If
you have any software you feel other customers might
benefit from, become one of many who have added their
software to LOCUS. Please see issue #15 for information
and forms needed to become a contributor.

Please note that, starting this month, the COMMUNICATOR
1000 has a new feature. USER'S QUEUE is a new section we
have added for you. If there is interesting information you
would like to share with all of our other readers, USER'S
QUEUE allows this to happen. From all of the contributed
articles we receive from you, the two most interesting ones
will be printed. For those articles chosen forissues #17 and
#18 only, the contributing author can select either a LOCUS
catalog ($15 value) or a program from the contributed library
(cost not to exceed $20).

USER'SQUEUE 1
INSTRUMENTATION

e HP-IBTrekie Article #6..................... 3
e HP-IB Performance Brief Available 3

OPERATIONS MANAGEMENT

e An Introduction to Data
Base Management Terminology 5

OPERATING SYSTEMS

e A Solution to the RTE
Multi-Terminal Blues 10

THE BIT BUCKET (Where all other software
information usually goes)

e Software Samantha 14
e Software RevisionCodes 17
e Programmatically Upping

aDeviceinRTE 17

 EDITOR'S NOTE

Thanks to those who contributed articles this month. It wasn't
easy to select the two that we should print. They were all
great.

Alsointhisissue . . . RTE hints, FORTRAN techniques, more
time and date information, HP-IB and other informative
items.

We at Hewlett-Packard are doing our best to keep you
informed about the HP 1000.

Please address any correspondence to:

EDITOR

COMPUTER SYSTEMS/COMMUNICATOR 1000
HP Data Systems Division

11000 Wolfe Road

Cupertino, CA 95014

CONTENTS

e How to Use Class I/O and Resource

Numbers in a Sort Application 19
e Expanded Capabilities for New Driver........ 21
e Filling Strings in
FORTRAN Arraysc.coiiiinaa... 22
e Julia and Julis, System
Time/Date Routine 23
e Know Thy Computer 4. & - --- 24
i Computer
’ Museum
HARDWARE
e Auto Boot-Up for 21MXE Computers 25
BULLETINS
e New Contributed Programs 26
e Documentation 28
e SoftwareUpdates.......................... 31
e Training Schedule 39

COMPUTER SERVICE DIVISION
INFORMATION

In response to our request for technical articles, we have
received some informative letters, and would like to pass the
information along to you here.

The first article comes from J. A. Lorenz and A. J. Swierad,
Jr. of Bell Laboratories, Holmdel, New Jersey:

“Using the program sequence described in the Com-
municator (pg. 592-593, Issue #12) presents a problem in
that portions of the code may be executed only once. It is
therefore necessary to implement flags to prevent the code
from executing more than once. Described below is a
technigue which allows the code to be reused, eliminating
the need for extra flags.”

“The problem in the original program sequence was: assign-
ing 1B to 1Y(0) in line 6, destroyed null array 1Y's DEF location.
Declaring two null arrays and equivalencing them, two DEF
locations are generated. Now assigning 1B to NOUSE(1)
effectively changes the DEF location for array WRITE without
altering its own DEF location. Array WHITE is then used to
access the data in the FORMAT statement. By carefully
adhering to these functional assignments for arrays NOUSE
and WRITE, both variables may be used repeatedly.”

“Two final notes, it is critical to follow the exact format
specified in the example when declaring the INTEGER and
EQUIVALENCE statements to generate the proper code.
Also if the statement 1Y(0) = IB+3 is used, a one word
overhead results in lieu of saying IY(0) = IB and using IY(3)
in the Exec write call.”

FTN4 ,M,L
PROGRAM BSIGN
INTEGER WRITE(CO0),NOUSECO)
EQUIVALENCE (WRITEC0),NOUSECO0))
ASSIGN 100 TO IB
NOUSE(1) = IB

100 FORMAT(*"THIS IS THE TEXT*")
CALL EXEC(2,6,WRITE(3),-16)

END

PROGRAM BSIGN
00000 000000 NOP
00001 016001X JSB CLRIO
00002 000003R DEF #+1
00003 026006R JMP 00006

INTEGER WRITE(0),NOUSECO)
EQUIVALENCE (WRITE(CO0),NOUSE(C0))
ASSIGN 100 TO IB

00004 000004R DEF ++0
00005 000004R DEF -1
00006 062010R LDA =42
00007 002001 RSS

00010 000020R DEF 00020
00011 072051R STA 1B
NOUSE(1) = IB

00012 062060R LDA 00060
00013 042052R ADA 00052
00014 042005R ADA =-7

00015 072053R STA A.001
00016 062051R LDA IB
00017 172053R STA A.001,1
100 FORMAT("THIS IS THE TEXT")
00020 026033R JMP 00033
00021 024042 ASC 1,("
00022 052110 ASC 1,TH
00023 044523 ASC 1,IS
00024 020111 ASC 1, 1
00025 051440 ASC 1,S
00026 052110 ASC 1,TH
00027 042440 ASC 1,E
00030 052105 ASC 1,TE
00031 054124 ASC 1,XT
00032 021051 ASC 1,")
CALL EXEC(2,6,WRITE(3),-16)
00033 062056R ~ LDA 00056
00034 042052R ADA 00052
00035 042004R ADA 00004
00036 072053R STA A.001
00037 016002X JSB EXEC
00040 00004SR DEF ++5
00041 000054R DEF 00054
00042 00005SR DEF 00055
00043 100053R DEF A.001,1
00044 000057R DEF 00057
END
00045 016002X JSB EXEC
00046 0000S0R DEF #+2
00047 0000SSR DEF 00055
00050 000000 0CT 000000
BSS 00001
00052 177777 0CT 1772777
BSS 00001
00054 000002 0CT 000002
00055 000006 0CT 000006
00056 000003 0CT 000003
00057 177760 0CT 177760
00060 000001 OCT 000001
SYMBOL TABLE
NAME ADDRESS USAGE TYPE LOCATION
100 000020R STATEMENT NUMBER
CLRIO 000001X SUBPROGRAM REAL EXTERNAL
EXEC 000002X SUBPROGRAM REAL EXTERNAL

IB 000051R VARIABLE
NOUSE 000004R ARRAY(+)
WRITE 000004R ARRAY(+#)
0010 ENDs

INTEGER LOCAL
INTEGER LOCAL
INTEGER LOCAL

This second article is from John Blommers of the Defense
Research Establishment Pacific, Victoria, British Columbia.
Mr. Blommers has some interesting points to present on
using the RTE Loader to scan the LG tracks for CALCOMP
plotting routines not in the DOS/RTE relocatable library (Re-
vision 1726). Here is what he has to say:

“...Revision 1726 of the DOS/RTE relocatable library
[%RL1B1 & %RL1B2] does not contain the CALCOMP plot-
ting routines PLOT, SYMB, NUMB, LINE, SCALE and AXIS.

Thus, the on-line LOADER will suspend itself for want of
these routines (if they are required). Operator intervention is
required to satisfactorily complete the load. The user must
regain control of the FMGR and do a :MR, %PLTLB, a :EX,
and a *GO, LOADR, 2, 0, 1 so that the LOADR scans the LG
area like a library. The procedure will look like this:

:TR #VPLT2

:RU, FTN4,sVPLT2, LIST XVPLT2, 58, LC
:LG, 1

:MR, XVPLT2

:RU, LOADR, 99, 6

LOADR SUSPENDS

« OF, FMGR

+« RU, FMGR

:MR, XPLTLB

tEX

+«G0, LOADR, 2,0,1

LOADR COMPLETES

The procedure | suggest is as follows:

:#+ SCHEDULE RTE FORTRAN 1V
:RU,FTN4,8VPLT2,LIST,%VPLT2,20,LC
:1LG, 1

:MR, XVPLT2

:#»» SCHEDULE THE LOADR FROM THE SYSTEM
:SYRU,LOADR, 99,6

:#+ RETURN HERE IMMEDIATELY (DUMMY LINE)
:PU, XXXXX

1o+ LOADR NOW SWAPS OUT FMGR

:#s LOADR EVENTUALLY SUSPENDS

:#+ FMGR REGAINS CONTROL HERE

:+s MOVE THE PLOT LIBRARY

:MR,XPLTLB

:#+ RESCHEDULE LOADR TO SCAN LG AS A LIBRARY
:SYGO,LO0ADR,2,0,1

:#¢ FMGR RETURNS HERE IMMEDIATELY

:#+ AND EXECUTES THIS DUMMY LINE

:PU,XXXXX

:#¢+ LOADR COMPLETES AND TERMINATES

:#+ FMGR REGAINS CONTROL HERE

:#+ AND RETURNS

The :SYRU, LOADR directive does not cause the FMGR to
schedule LOADR and thus waits until LOADR completes.
The next directive, :PU, XXXXX, is executed as a dummy,
allowing FMGR to be swapped by the LOADR. When
LOADR suspends itself, FMGR is ready to: MR, %PLTLB. The
whole transfer file executes hands-off.”

Ourthanks to J. A. Lorenz and A. J. Swierad, Jr. of Bell Labs,
and to John Blommers of Defense Research Establishment
Pacific for the fine information that we have been allowed to
pass along to you.

If you have tips, techniques, applications or other technical
information you feel would be beneficial to all our other
readers, send it to:

EDITOR

COMPUTER SYSTEMS/COMMUNICATOR 1000
HP DATA SYSTEMS DIVISION

11000 WOLFE ROAD

CUPERTINO, CALIFORNIA 95014

Remember, for the two articles selected for publication in
issue #17 and #18, the contributing author will have his or
her choice of a LOCUS catalog or a program from the
contributed library (cost not to exceed $20).

HP-IB TREKIE ARTICLE #6
HP-IB PERFORMANCE STUDY SUMMARY
Larry W. Smith/DSD

The HP-IB performance study as presented in the previous 5
issues of the COMMUNICATOR have indicated that the
HP-IB handshake speed and other areas of consideration
are dramatically affected when worst-case conditions pre-
vail. In order to allow a designer to optimize the bus data rate
under such conditions, you might find the following recom-
mendations applicable to your environment:

1. Change the standard to permit the use of Schottky de-
vices by allowing the driver output voltage to be 0.5 volt
at 48 ma sink current.

2. Change the standard to allow a maximum device
capacitance of 50 pf.

3. Change the standard to permit a data settling time of
350 nsec if tri-state drivers are used and the total cable
length is limited to one meter per equivalent device
load.

4. Change the wording of the standard to allow a bus
attachment to present a dc load equivalent to multiple
devices if it is known that the total number of attach-
ments will be limited. This will permit a controller to
simulate several best-case device loads. This best-case
resistive load imparts the advantages of extra device
attachements without introducing device capacitance,
which affects open collector rise times and propagation
delays.

5. Include some speed guidelines in the standard. These
guidelines might take the form of figures shown in the
article on ‘Bus Topology & Handshake Analysis’,
perhaps including a curve showing the expected condi-
tions rather than worst or typical cases.

6. Change the standard so the double DAV transition will
not cause errors. Of the solutions listed in this report, the

linear Topology/Schmitt trigger receivers might be the
least painful.

7. Change the standard to require at least four-fifths the
devices be powered on.

We hope that this series of articles about the HP-IB have
been interesting and functional to you. Since the purpose of
the articles was to arrive at system guidelines for optimizing
HP-IB performance under worst case conditions, we also
hope that the knowledgeable hardware designer can make
use of the study for design purposes. All in all, we intend to
make the HP-IB an understandable and easy to use inter-
face system. If you have any questions regarding any of the
articles, please write us. We will respond as quickly as
possible to your request.

HP-IB PERFORMANCE BRIEF
AVAILABLE

Neal Kuhn/DSD

A new performance brief, titled “Performance Evaluation of
HP-IB using RTE Operating Systems” has been published.
The brief covers the following topics:

* How HP-1B operates using RTE

How to calculate measurement time

How to calculate expected computer efficiency
When to transfer data using DMA (direct memory
access)

When to transfer data using interrupt techniques

*
*

*

This performance brief presents a model which can be used
to determine the time to send or receive data messages from
various instruments and devices operating with the HP 1000
using RTE and HP-IB. The model can also be used to calcu-
late the amount of spare time the computer will have during a
measurement. This spare time, or unused computer poten-
tial, can be used to operate other HP-IB test stations or
perform other program operations.

The following list shows the current HP-IB application notes
available. They are all available from your HP salesman.

AN201-1 ROUTINE QA MEASUREMENTS OF
(5952-1578) PRECISION RESISTORS

Describes an HP-IB based 21MX computer-controller in-
strumentation system capable of measuring, printing and
plotting statistical distribution of precision resistor values.

AN201-2 MEASURING DIFFERENTIAL
(5952-9932) NON-LINEARITY OF VOLTAGE
CONTROLLED OSCILLATOR

Describes an HP-IB based 21MX computer-controlled in-
strumentation system for measuring and plotting differential
non-linearity of the modulation sensitivity of a voltage con-
trolled oscillator.

AN201-3 A MULTIPLE STATION
(5952-1686) ELECTRONIC TEST SYSTEM

Describes an HP 1000 computer system with bus-
connected instruments for component, sub-assembly, and
final product tests at three different test stations.

AN201-4 PERFORMANCE EVALUATION OF HP-IB
(5953-0864) USING RTE OPERATING SYSTEMS

This brief contains performance data to help determine
whether the Hewlett-Packard Interface Bus is suitable for
various interface applications. A model is developed 10 help
the HP-IB user determine the total time to send or receive a
data message and the amount of HP 1000 or 21MX com-
puter utilization. Performance examples with various de-
vices, such as the HP 3455 digital voltmeter and the HP 2240
measurement and control processor are included.

AN INTRODUCTION TO DATA BASE
MANAGEMENT TERMINOLOGY

Gary McCarney/Rockville
INTRODUCTION

A data base is a collection of information that has been
stored in such a way that easy access to the information is
made possible. The designer of a data base must decide
well in advance how this data should be stored so that
retrieval is rapid and easy. In order to meet these goals,
certain fundamental rules must be observed. These rules are
written using terminology common to data base manage-
ment systems. This terminology is confusing to many
people, particularly scientific programmers. The purpose of
this article is to explain this terminology beginning with the
smallest entity and gradually building to a complete descrip-
tion of a data base. By using an inventory control example,
the structure of the IMAGE 1000 Data Base Management
System (DBMS) will be examined. No previous data base
background is assumed of the reader.

DATA ITEMS

The smallest entity in a DBMS is known as a data item. For
example, the vendor name of some part would be a data
item, the part name would be another data item, etc. As our
inventory control system is designed, some amount of space
(storage) must be allocated for storing the contents of each
data item. Assuming our inventory information is stored on
punched cards, we might assign the first ten columns for
vendor name, the next 20 columns for part number, and so
on. Then the first data item uses ten columns and the second
data item uses 20 columns.

When it becomes necessary to find the card which contains
a part number 1997643325 from vendor WIDGETS, we need
a way to specify which columns on each card are to be
searched. Consequently, each data item is assigned an
aftribute which contains the necessary information about
card columns and length. The IMAGE 1000 DBMS can have
up to 255 unique attributes using up to six characters each.
For example, let the attribute VENDOR have a length of ten
columns starting at column one, and attribute PARTNO be
20 columns long starting at column eleven. Now we can
search for a VENDOR of WIDGETS and a PARTNO of
1997643325.

The actual values that can be stored into data items can be
integer, real or ASCH. Integer values use five columns and
are denoted in the DBMS as an "'I1." Real values are defined
as ten column fields and denoted as R2. Finally, ASCII
strings are indicated by ‘Ux' where ‘x’ is any even number of
characters up to and including 126.

DATA ENTRY

The next level inthe DBMS system is the data entry which is
a collection of data items. All the data items on a punched
card might be defined as a data entry.

VENDOR PARTNO QTY
u10 u20 I
WIDGETS 1997643325 00005

Figure 1. Data Entry Example

Figure 1 shows a data entry consisting of three data items
having attributes VENDOR (10 ASCIf characters maximum),
PARTNO (20 ASCII characters maximum) and QTY (one
word integer using five columns). For those readers familiar
with the RTE file management package (FMP) terminology, a
data entry is similar to an FMP record. The maximum size
permitted for a data entry is 512 bytes.

DATA SETS

A collection of similar data entries is known as a data set.
Figure 2 contains four data entries which together make up a
particular data set that will be referred to as the INVENTORY
data set. The maximum size for each data set is 32767 data
entries. Data sets are similar to FMP files.

VENDOR PARTNO qQTY
u1o0 U20 "

WIDGETS 1997643325 00005
AUTOS 4599200043 00001
AXES, INC 0000056477 00358
BWD ENT 0506722381 10000
WIDGETS 9006773265 00047
AXES, INC 0788004537 00500

Figure 2. Data Set Example

FINDING PARTICULAR VALUES

One of the reasons for building this inventory is to be able to
determine how many items are in stock. Perhaps we get a
request to find all items that exist in stock from a particular
vendor. It would be necessary to search all the contents
under the VENDOR attribute to find all entries for this vendor.
This requires a sequential search through the complete in-
ventory. If some type of relationship could be maintained to
prevent the need for a sequential search each time we seek
inventory information from a vendor, then the search time
could be significantly reduced.

Let's decide to include within each data entry a pointer from
Vendor A to the next data entry that references Vendor A.
Figure 3 illustrates such a pointer setup.

VENDOR PARTNO QTty
u10 u20 I
WIDGETS 1997643325 | 00005
AUTOS 4599200043 | 00001
AXES, INC 0000056477 | 00358
BWD ENT 0506722381 10000
WIDGETS 9006773265 | 00047
AXES, INC 0788004537 | 00500

Figure 3. Linking Similar Data Item Contents

Since VENDOR is the data item within each data entry that
should contain such a pointer, this particular data item is
known as the key item. Therefore, all key items are linked
together by similar contents. Now when a search is required
for a particular vendor, it is not necessary to search the
entire collection of data entries, rather simply follow the
pointers (known as forward pointers or links). How do we
know when we have found the last entry in the data set? The
pointer must contain some special character to indicate the
end, such as zero.

At some point, it becomes necessary to add another part
number to our inventory for Vendor A. We search all linked
entries for Vendor A until we find the link that contains a zero.
We then replace the zero with a pointer to the entry that we
are adding. The new entry will automatically get a forward
pointer of zero. There will be times when we change to
another vendor for a particular part and wish to remove a
particular data entry for the old vendor. Once we find the
appropriate entry, how do we know which pointer needs to
be modified? The link we find on the data entry to be deleted
only points to the next occurrence of this vendor. Therefore,
we need to modity the previous data entry’s link.

One way to solve this problem is to include not only a link to
the next entry (a forward link) but also a backward link to the
previous entry.

Now when an entry is removed, we simply modify the next
record with the backward point from the entry we seek to
delete, and in turn modify the forward pointer of the previous
entry to bypass the entry we are deleting. These forward and
backward pointers will require storage within the data entry.
This storage is known as the media record.

The media record is considered part of the data entry and
contains both forward and backward pointers for each key

item within the data entry. There can be at most five key
items per data entry — that is, there can be forward and
backward links for, at most, five different data items within
the data entry. The contents of the link is simply a relative
record pointer as shown in Figure 4.

T o« o
v i $ g o -
o i [a] [
§5 g&r 5: g g
=z m 5 w3 > o
1 0 5 WIDGETS 199. ..
5 1 0 WIDGETS 900. ..
13 empty
ORIGINAL
Eo: z 2
z g =] =
§: Bt z S
o5 b ar I">J o
0 5 WIDGETS 199....
1 13 WIDGETS 900....
13 0 WIDGETS 678...
AFTER ADDITION
©
s 3 S 2
2 g a =
T X gx z [
g C o £ <
m w > o
0 13 WIDGETS 199....
WIDGETS 900....
13 0 WIDGETS 678...

AFTER DELETION

Figure 4. Media Records

OPERATIONS MANAGEMENT

Now it is only necessary to perform a sequential search to
find the first occurrence of a particular key item. Then using
the links, access may be made directly to the next desired
dataentry. To further reduce the access time, we need some
quick way to find the first occurrence of the desired data
item.

FINDING THE FIRST ENTRY

In order to find the first data entry in a list, it may be desirable
to maintain a separate data set which contains a single data
entry foreach key item. For example, a set that contains only
vendor names. The media record for this data entry would
contain a pointer to the first occurrence of this vendor in

another data set. Since this separate data set is being de-
veloped to reduce the time required to find the first occur-
rence of this vendor, how does a separate data set reduce
the access time? It would appear that a serial search in

either data set will require about the same amount of time.

The data items in this separate data set will not be stored in
sequential fashion. Instead, the data items will be stored into
relative records whose addresses are calculated by per-
forming a mathematical routine upon the contents of the data
item itself, a method known as hashing. When our sample
vendor WIDGETS is processed through the hashing routine,
perhaps the relative record address that is calculated is five.
Now every time some type of access is required involving
the key item WIDGETS, the DBMS will process the data item
through the same hashing routine to determine the relative
record in the separate data set. This entry will contain a
pointer to the first occurrence of this vendor within the sec-
ond data set. See Figure 5.

Assume this additional data set is called the NAMES data
set. It will be used for each access to the INVENTORY data
set. One guestion that often comes up is — why have two
data sets? Why not hash the entries into the INVENTORY
data set directly? Considering our example, we have two
part numbers from vendor WIDGETS. If we stored in the
INVENTORY data set by using the hashing routine on the
vendor name, both part numbers would try to be stored at
the same location. There is no easy way to store one and still
reference the other part number.

Since entries in the NAMES data set are stored into relative
locations determined by hashing, there may be times when
two or more vendor names are similar enough to hash to the
same relative location. The first time a data entry location in
the NAMES data set is filled, it is known as a primary entry.
The next time hashing points a new entry to this record, it is
known as a synonym or secondary “hit". Since we cannot
store more than one piece of information about a vendor
within each NAMES data set entry, it is necessary to “flag”
the fact that a synonym has occurred. This flag is stored

AXES, INC
NAMES Data Set

WIDGETS

BWD ENT
— AUTOS

VENDOR PARTNO QTy

u10 u20)]

> WIDGETS 1997643325 00005
P AUTOS 4599200043 00001
—1 AXES, INC 0000056477 00358
» BWD ENT 0506722381 10000
»| WIDGETS 9006773265 00047

AXES, INC 0788004537 00500

INVENTORY Data
Set

Figure 5. Data Set Relationships

within the primary data entry. Synonyms are then stored in
the first available data entry after the primary.

For exampie, assume we are adding a new vendor SERIAL.
Further assume that the address calculated after SERIAL
has been hashed is two. Location two is already filled. (See
Figure 6.a.) The next available record is number three and
SERIAL is stored there (see Figure 6.b.). A pointer is set up
from record two to record three indicating a synonym.

6.a. 6.b. 6.c.
AXES, INC ': AXES, INC AXES, INC
SERIAL PICS
SERIAL
WIDGETS WIDGETS WIDGETS
BWD ENT BWD ENT BWD ENT
AUTOS AUTOS AUTOS

Figure 6. Primary and Secondary Entries

As a new primary entry (vendor PICS) hashes to record that
is currently being occupied by a secondary entry (say re-
cord three), the following takes place: First, the secondary

entry is moved to the first empty data entry and the pointer
from its corresponding primary is changed. Then the new
primary entry replaces the record that had been used by the
secondary entry (see Figure 6.c).

Each data entry in the NAMES data set will also require a
media record. This media record contains pointers to the
first and last occurrence of the key item in the INVENTORY
data set as well as synonym pointers, if any.

Each access takes us to a particular data entry in the
NAMES data set where a check is made to see if we have the
right vendor. If not, the media record is checked for
synonyms. When a match is found, we have a pointer to the
first data entry in the INVENTORY data set. For additions to
the INVENTORY data set, the last occurrence pointer pro-
vides the relative data entry location. The zero forward
pointer is replaced with the new data entry location and the
tast occurrence pointer is updated.

TYPES OF DATA SETS

The data sets containing the hashed entries are known as
master data sets. There are two types of master data sets:
automatic and manual masters. The automatic master con-
tains only the media record and a single data item which is
the key item. Manual masters contain the media record, the
key item, and can contain other data items as well. More
details about the differences between the automatic and the
manual master will be covered in the next section.

The data sets that contain the vendor name, part number,
quantity, etc. are called detail data sets since they contain all
the details about some particular inventory component.

MASTER DATA SETS

The master data sets contain media records that point to the
corresponding data entry (key item) in detail data sets. Each
master entry can contain pointers to as many as five different
detail data sets. These pointers are referred to as data paths
— links from masters to details.

Automatic master data sets contain data entries consisting
of a media record and a key item only. Any additions to a
detail data set that contains key item attributes pointed to by
an automatic master will force a new entry into the master for
each new key item value. Deletions from the master will be
done automatically when the last detail data entry is re-
moved. Autormnatic masters are error prone since a new entry
could result from transposed digits, misspelled vendor
name, etc.

Manual master data sets consist of a single key item but can
also contain non-key data items as well. Perhaps for each

OPERATIONS MANAGEMENT

vendor in a manual master data set, we have the vendor as
the key item and the vendor’'s address as the non-key items.
Additions of detail data entries to a data set that has key
items pointed to by a manual master requires the user to first
make additions to the manual master for new vendor names
before it is possible to add the detail entry. Therefore, all
additions and deletions from a manual master data set in-
volve two operations when a new key item is concerned.

For example, assume there is a remote terminal in the receiv-
ing department which is used to communicate with our in-
ventory data base. When a shipment of components arrives,
the receiving clerk types the part number, vendor name and
quantity received. If the clerk incorrectly types the part
number, what happens to the data base?

If we have defined the part number as a key item in a manual
master, the DBMS will search the master for this part
number. When the number is not found, an error will be
reported to the clerk. Now the clerk can correct the entry.
However, if the part number was a key item in an automatic
master, the DBMS would create a new master entry for the
incorrectly typed part number.

DETAIL DATA SETS

Detail data sets contain a media record and one or more
data items for each data entry.In our example, INVENTORY
is a detail data set. All key items within the data entry will
require pointers within the media record. The media record
can contain information about five key items per data entry.
The media record contains forward and backward links to
data entries for a similar key item entry. These links are
known as data chains.

As we create multiple detail data sets and master data sets,
these data sets are collectively known as a data base. With
the IMAGE 1000 DBMS there is a possibility of having a total
of 50 different data sets which include masters and details.
Figure 7 contains a summary of the capacities permitted in
an IMAGE 1000 data base.

50 data sets per data base
32,767 data entries per data set
512 bytes per data entry
255 different data items per data base
126 bytes per data item
6 characters per data item name
5 keys per detail data set
5 detail data sets per master data set

Figure 7. Data Base Capacity (Maximum Value)

OPERATIONS MANAGEMEN

WHAT IS A DATA BASE?

As we have seen, a data base is merely a collection of

information that has been structured into a preferred form to
permit rapid access to the contents. As the information is
stored into the data base, no ordering is necessary since the
links provide the ordering. The manager of the data base
must decide well in advance what type of structure is de-
sired for this data base and design it accordingly. All chain

maintenance is performed automatically by the IMAGE 1000
Data Base Management System. See the HP IMAGE/1000
Data Base Management System Reference Manual, (Part

No. 92063-90001) for the necessary steps for this design
and subsequent usage.

This article is intended to assist in the understanding of the
terminology that is used throughout that manual and in mast
other data base discussions. Hopefully, the reader can now
understand and use these new terms.

A SOLUTION TO THE RTE
MULTI-TERMINAL BLUES

Larry Smith/DSD

If you are an RTE user and have ever wondered why there is
only one logical source (LS) and one load-and-go (LG) area,
making activities such as program development from a
multi-terminal standpoint frequently inconvenient and more
often than not frustrating, then this article is a must for you to
read. The answer to this bewildering question requires a
historical review of the HP Real-Time Executive Operating
System from its beginning to the present date of this article,
RTE-IIl. The evolution of any operating system is like observ-
ing style and price changes of an automobile from one year
to another — you take what you have and improve (enhance)
it until you're convinced it meets the demands of the market.
Then you hope to make some money. RTE has been a
proven system for many years on a large and quite diver-
sified customer base by maintaining a constant policy of
upgrade.

You might further ask yourself, “Is there a short term cost-
effective solution to this problem without investing a lot of
time and resources into applications programming?" It will
be the main purpose of this article to present a typical
solution that has been thoroughly tested in hopes that it
might solve your problem and/or give you some additional
insight on how to cope with the situation. All in all, whatever
your exposure has been to RTE, you might be able to pick up
some concepts that will help you in other areas as well.

RTE- PAST AND PRESENT

The original RTE in 1968 ran on a 2116A computer with a
7901 or 7900 disc and was called "RTE-E". The operating
system had all the basic properties of a Real-Time system as
the current version with the exception of some recent en-
hancements such as Class I/O, Resource Numbers, Subsys-
tem Global, LU lock, queue scheduling, and some program
interface capabilities. The system was designed for single-
terminal program preparation where input and output to
several devices such as terminals was a normal built-in
capability of the system.

Furthermore, since File Manager was in development stages
at that time, the requirement for multi-terminal program
preparation was not in large demand by the majority of our
customer bases. If other terminals were configured into the
system, they were used for data input and display.

10

Current with the development and announcement of the
original FMP, the predecessor of the current Multi-Terminal
Monitor (MTM) was a program called “AUXTY". The program
ran by taking advantage of one of the four possible ways to
schedule a program under RTE.

Operator — RU,FMGR

Time of Day — ITWHZAT,2,5; ON,WHZAT NOW
Program — CALL EXEC (9,NAME,IP1,. .)
External Interrupt (strike key on terminal and get
prompt)

o

EXTERNAL INTERRUPT

This required a special entry into the interrupt table during
system generation (SC,PRG,AUXTY) and an interface
routine to the system message processor ($MESS) so that
one additional terminal would have the same capability as
the system console for entering operator commands.

As the popularity for AUXTY increased and the announce-
ment of FMP, which had some system related commands
such as "RP” and “SP”, AUXTY was given a facelift and
redesigned into two programs, PRMPT and RPN. These
routines used later system enhancements such as class /O
to give the user the capability of executing the same pro-
gram at different terminals. The only remaining problem was,
and still is, the LS and LG areas which are nothing more than
scratch work areas for the standard utilities. This problem
was left for future resolvement since it would mean a some-
what extensive overhaul of the operating system, FMP, and
all utilities including the system generator. Thus, variable
procedure files were implemented in a later enhancement of
FMP as a tool for the user to develop a multi-terminal system
tailored to a specific application. This is the one we intend to
explore.

THE OBJECTIVE — A SESSION ORIENTED RTE

Our ultimate objective is to make RTE function like a multi-
terminal system where each terminal runs a standard proce-
dure file for activities such as program preparation, editing,
etc. Since there are as many ways to solve this problem as
there are to optimize a FORTRAN program, the solution

presented in this article utilizes only one capability of FMP:

Variabie Procedure Files

and is not intended to be as comprehensive as the HP 3000
system, nor is it intended to be the best optimal solution. So,
sit back, grab your favorite computer, and evaluate.

To make a program operate in a multi-terminal environment,
you must first consider how it is written:

Case Type of Program
1 Main not using LS or LG.
3 Main using LS and/or LG.
Main with segment(s) not using LS
or LG.
4 Main and segment(s) using LS and
LG.

The structure and considerations for your procedure file will
vary slightly according to the type of program.

Case 1: Main Program and segments not using LS or LG.

This is probably the simplest case since there is no conten-
tion for LS and LG and no segments called by the main.
Using the system Real-Time editor, EDITR, as an example,
we can construct a generalized variable procedure file that
will give the terminal user the following:

Terminal LU=1 Terminal LU=7

:RU,LEDIT :RU,EDIT
SOURCE FILE? SOURCE FILE?
/ /

/ER /éR

END OF EDIT END OF EDIT

Everybody runs the same name and the FMP
procedure file does the rest.

To implement this basically involves two steps:

‘Step A: Set-Up a copy of the editor within FMP under a
different name.

Step B: Design a procedure file named "EDIT”

Step A can be solved by entering the following command
sequence once:

:SP,EDITR:SC:-2::-1
:RN,EDITR:SC:-2, EDIOO (This will be the “Master
Copy™)

11

TING SYST

We will later see that it is advantageous to load the editor
on-line, save in FMP, and not make available in system area
for a solution to programs using LS and LG. With the editor

renamed to EDIQO, step B can now be done by creating an

efficient FMP procedure that will construct a copy of EDIOO's
ID segment for each terminal. as follows:

:RU,EDITI ,rec-lengthl
rec-length=maximum record length for editor
(recall,default=150 characters})

Remembering that FMP preserves the terminal LUN in 0G
(—40 P thru —37P the procedure file looks like this:

1. :SV,4,9,IH Save existing security code in 9G
and set to no command echo.

2. +CN,0G,21B Disenable terminal interrupts so user
3. :LL,06G doesn't prematurely abort this file.
4. +CA,3,EDIOO Set in master copy name in 3G.
5. :L0,0 Set log LU to bit bucket to suppress
all possible FMP errors (step 10) o
6. :CA,-25:P,0,-39P,/,10,1,-39P,#,400B,+,-25P
3G 3G
—28P 3 3
—27P 1 EID Elp Form the ASCII equivalent
of the binary terminal LU
-26P {1 1O 10 in 0G into 3G.
—25P 1 01| & I CH B

7. :CA,-26:P,-39P,/,10,+,-26P

8. :RP,,3G Get rid of EDIOG in case of a
previous procedure file abort.
8. :CA,6:P Set in no command error (6P=9).

10. :RN,EDID0:SC:-2,3G Attempt a re-name.

11. :1IF,6P,NE,0,-3 If a rename not in progress from
another terminal, then proceed to
restore program.

12. :RP,3G:SC:-2 Create ID segment.

:IF,6P,NE,0,8 Check for no available 1D
seg-system overload.

13. :RN,3G:SC:-2,EDIOO0 Rename back to original for other
pending terminals.

14. :RU,3G:SC:-2,0G,1G Run EDIOG.

15. :RP, ,36G Release ID segment.

16. :RT,36 Release work area tracks.

17. :CN,0G,20B Re-enable terminal for interrupts.

18. :SV,96 Restore severity code.

19. :SE Null all globals for next entry.

20, :TR

21. :AN,0G,System Dverload - Task canceled

22. +1F, ,EQ, ,-6

Although the above procedure file has the advantage of
being general purpose for any program name of the format:

xxx00
where xxx=any three ASCII characters

it inherently contains the characteristics of any procedure
file; that of being slow and requiring a few disc accesses
such asinlines 9 - 11. In most session oriented applications,
the former outweighs the latter since real-time response is
usually not important.

The previous example centered around the idea of allocat-
ing and releasing program ID segments on a first-come,
first-serve basis, regardless of priority and resources. The
idea was to minimize the number of required blank ID seg-
ments needed for on-line activities in a further effort to op-
timize system table space. If, on the other hand, your system
memory requirements are slim, then a modified approach
can be taken in the procedure file that will be faster and
more efficient.

The first step is to allocate all ID segments in the WELCOM
file at system bootstrap time:

:RN,EDITR:SC:-2,EDIO1
:RP,EDIO1:5C:-2
:RN,EDIO1:SC:-2,EDIO?
:RP,EDIO7:SC:-2

With this done only once, then its a simple matter of forming
the ASCII program name in 3G and running the ID segment
in memory.

To modify this for Case 2 would simply involve inserting as
many “RP,NAME"” commands for all program segments
(with appropriate checks) into the command file after line 14
or make them available in the WELCOM file. The modified
transfer file would look like this.

:SVv,4,9,IH

:CN,0G6,21B

:LL,06

:CA,3,EDIOO

:0L0,0
:CA,-25:P,0,-,-39P,/,10,+,-39P,+,400B,+,-25P
:CA,-26:P,-39P,/,10,+,-26P

:CA,6:P

:RU,3G:5C:-2,0G,16

:IF,6P,EQ,0 Ensure ID segment still there.
:AN,0G,EDITOR NOT AVAILABLE FOR THIS TERMINAL

12

:RT,36G
1SV, 96
:SE

Since there is less to worry about in this example, the re-
sponse time will significantly improve at the terminal and the
disc will not be as busy. The only disadvantage is the vul-
nerability of the ID segment to the “"OF" command
(OF,ED10G,8).

Case 2: Main Program and Segment(s)

The only functional difference between this and case 1, is
the fact that all segments of a main must be defined in short
ID segments when the main is run. Keeping further in mind
that segments can be shared by more than one program
because the segments are swapped into the main, it is
suggested that all segments be allocated at system
bootstrap time. Since there is no convenient means to allo-
cate and release short ID segments in a procedure file and
due to the fact that they only occupy 9 words apiece of
system table space, the justification to leave them always
allocated becomes practical. Thus, simply add a few com-
mands to the WELCOM file or a file of your choice. As an
example, let's use Real-Time BASIC.

:RP,BASC1
:RP,BASC2

Only 72 words of system table space
:RP ,BASC8

Now replace lines 4, 10, and 13 with BAS00 and you have a
procedure file for Real-Time BASIC.

Case 3 & 4: Main program with or without segments using
LS and/or LG

Since this type of program uses the scratch work areas, the
procedure file actually becomes simpler:

:Sv,4,9,1H

:CN,06,21B « '

:L0,0q ;o E
:LL,06 LY o | -
:CA,G:P (5 5 (4% Syt S Ve A \,‘;"‘\,) i DALTie L1 SRV

:RP,IFTN4:SC:-2

:IF,BP,NE,0,15 Check to see if another terminal
running program

:RP,F4.0

:RP,F4.1 Allocate ID segments

:RP,F4.2

:RP,F4.3

:RU,'FTN4,1G,26G,3G,4G,56
:RT, 'FTN4

:RP, ,F4.0

:RP, ,F4.1

:RP, ,F4.2 Release ID segments
:RP, ,F4.3

:RP,,'FTN4

:CN,0G,20B

1SV, 986

:SE

: TR

13

:AN,0G,FORTRAN COMPILER BUSY-TASK CANCELLED
:IF, ,EQ, ,-6

With this concept, you can further expand this into a more
general purpose procedure file by defining it's usage as
follows:

:RU,FTN4,source-input,list-output,
reloc-output,securityl,LO0AD]

oftware
amantha

SOFTWARE SAMANTHA
Messrs. Software Samantha
Care of Communicator
1000 (9600) Group

HP Data Systems Division

Dear Samantha:

I saw your note in the Communicator (p. 25, issue No. 14), regarding use of function IGET in lieu of array IGET. | had previously
noted that techniques for array base storage and element address calculation (herein after referred to as “techniques”) are
different in the new FORTRAN compiler. Unfortunately function IGET cannot be used to solve all problems users may have
generated by taking advantage of the techniques as implemented in the old compiler (for example, Gary Gubitz's short
program (p. 592 issue No. 12).

The old techniques allowed one to take all sorts of shortcuts and unhappily | have done just that in over 100 programs. | was
quite aware that | was not using standard FORTRAN but reasoned that in the “unlikely event” that HP should switch to a
FORTRAN implementation which used different techniques for array base storage and element address calculation, | would
simply install both compilers in our RTE system and convert as routine program maintenance was required. Alas, HP was able to
close that door by using the same segment names in the new compiler that they use in the old one. It is not feasible for me to
revise all of the programs and | don't have sufficient disc storage to save them as relocatable files.

Can you help me? Specifically, if | could get the source code for the old compiler, | could rename the segments and install both
compilers. Any other suggestions would be appreciated as | would sincerely like to install the new compiler, but will require the
old one also for quite some time.

Yours Very Truly,

Jeff Wynne

Code 3021, Bldg. 759
USN Ordnance Station
Indian Head, MD 20640

Dear Jeff,

There exist a couple easy ways of installing both compilers on a system for compilation of old programs which take advantage
of the methods of array storage and address calculation used by the old compiler. The user may save both compilers in type six
files using the SP/RP File Manager commands and then rename as necessary, or supply his or her own copy of the program
SEG.F which returns a pointer to the segment name given the segment number.

Let us consider first the alternative of saving and restoring the main and segments with the File Manager SP and RP commands.
The first step is to load the new compiler into the system on-line or at generation. Using SP, <program> save the main and
segments in type six files on LU 2. If loaded at generation a RU,LOADR,,,4 will be required to delete the main and segments
from the permanent program area. Next do a temporary load of the old compiler on-line. At this point a naming problem exists.

14

One option available is to save the old compiler on LU 3 and create the necessary transfer files to restore and release the ID
segment and tracks of the main and segments.

Another option at this point is to rename the existing program files and save the old compiler on LU 2. User may then create
transfer files which restore and release ID segment and tracks and also do the necessary renaming of files before restoring. For
example, consider the set of transfer files below:

/FTN4OD (RESTORE OLD FTN4) /FTN4N (RESTORE NEW FTN4)
:RN,FTN40,FTN4 sRN,FTN4N,FTN4
:RN,F4.00,F4.0 :RN,F4.0N,F4.0
:RN,FR.10,F4.1 :RN,F4.1N,F4.1
:RN,F4.20,F4.2 :RN,F4.2N,F4.2
:RN,F4.30,F4.3 :RN,F4.3N,F4.3
+RP,FTN4 :RP,FTN4
:RP,F4.0 :RP,F4.0
:RP,F4.1 :RP,F4.1
:RP,F4.2 :RP,F4.2
:RP,F4.3 :RP,F4.3
:RN,FTN4 ,FTN40 :RP,F4.4
:RN,F4.0,F4.00 :RN,FTN4 ,FTN4N
:RN,F4.1,F4.10 :RN,F4.0,F4.0N
:RN,F4.2,F4.20 :RN,F4.1,F4.1N
:RN,F4.3,F4.30 :RN,F4.2,F4.2N
: TR :RN,F4.3,F4.3N
: TR

And a similar set of transfer files would be necessary to release the ID segment and tracks of each of the modules.

A second method of installing both compilers involves modifying the program SEG.F, the function of which is to return a pointer
to the name of the segment, given the segment number. For example, given the value N, SEG.F returns a pointer to the string
“F4.N". A modified SEG.F which returns a pointer to the name “F5.N” for value N is shown below:

ASMB,R
NAM SEG.F
ENT SEG.F

+ PURPOSE: GIVEN SEGMENT NUMBER

. RETURN POINTER TO SEGMENT

. NAME .

*

* JSB SEG.F

. DEF SEG#

* -> RETURN B POINTS AT NAME

*

SEG.F NOP
LDA SEG.F,I GET DEF TO SEG#
1SZ SEG.F GET RETURN ADDRESS
LDA A,l GET SEGMENT NUMBER
ADA . 0" CONVERT TO ASCII AND ADD ™.*
STA NAM+1 SET IN NAM STRING
LDB PTR RETURN POINTER
JMP SEG.F,I TO STRING IN B

* *

PTR DEF NAM
NAM ASC 3,F5.X
.0" ASC 1,.0
A EQU 0

END

15

After the modifications have been made and the new compiler loaded and saved the user can then rename the RP files to
match:

:RN,FTN4 ,FTNS
:RN,F4.0,FS5.0
:RN,F4.1,F5.1
:RN,F4.2 ,FS5.2
:RN,F4.3,FS5.3
:RN,F4.4,F5.4

Next load and save the old compiler and finally, for user convenience, create transfer files which restore and replace the 1D
segments and program tracks.

/FTN4 /FTNS
:RP,FTN4 :RP,FTNS
:RP,F4.0 :RP,FS5.0
:RP,F4.1 :RP,FS.1
:RP,F4.2 :RP,F5.2
:RP,F4.3 :RP,F5.3
: TR :RP,F5.4
: TR
/FTN4 /FTNS
:RP, ,FTN4 :RP, ,FTNS
:RP, ,F4.0 :RP, ,F5.0
:RP,,F4.1 :RP, ,FS.1
:RP,,F4.2 :RP, ,FS5.2
:RP,,F4.3 :RP, ,F5.3
: TR :RP, ,F5.4
: TR

Thus, user may install both compilers by a number of different methods. User may store the second compiler on the auxiliary LU
3 or rename program files before restoring the program. Or, provide your own version of SEG.F as shown above, and rename
program files to correspond.

If you have any questions or comments about your 1000 (9600) system please address them to:

SOFTWARE SAMANTHA
c/o Communicator Editor
Hewlett-Packard

Data Systems Division
11000 Wolfe Road
Cupertino

CA 95014

16

SOFTWARE REVISION CODES

Dick Walker/DSD

Understanding the meaning and use of the Software Revi-
sion Codes appearing on released software and its support-
ing documentation is highly desirable for efficient operation
of your installation. Such awareness has the potential of
preventing confusion and many hours of needless program
debugging.

Every HP 1000 software module has an associated Software
Revision Code that identifies the release date for either new
software or a subseguent enhancement to the software
module. This number (e.g., 1740) appears on a label fixed
on the outside of the distribution media; for instance, fixed on
grandfather discs for RTE-Il and |ll systems, or on the paper
cover of flexible discs for RTE-M flexible disc systems. For
mini-cartridge versions of RTE-M, the Software Revision
Code may be found by reading the File Directory, which is
the first file on any mini-cartridge containing HP-supplied
software.

The Software Revision Code also appears in the NAM record
of each module. NAM records can be found in the loader or
generation listings for the software. The Software Revision
Codes in these listings appear in the form:

REV. xxxx (e.g., 1740)

and are immediately followed by a six-digit internal HP re-
lease code that has no particular relevance for end users.

It is critical to good system housekeeping that only the

updated software is accessible to users. It is suggested that
older versions of software modules retained for special ap-
plications be kept away from the work areas when not in use.

Whenever new or updated software is distributed to users on
the Software Subscription Service, new or updated
documentation is also supplied in one of the three forms: a
new manual, a change package (added and/or changed
pages for an existing manual), or a complete revision. In
every case, the documentation also contains a Software
Revision Code that reflects the software being described.
The number can be found in a manual or manual change in
the following places:

a. Manual title page, where it will appear as a message
similar to the following:

“(This manual reflects information that is compatible
with 92064A Software Revision Code 1740).”

b. Under “Publication History” on the Publication Notice
page located on the back of the title page. The last

THE BIT BUCKE

17

change listed will reflect the Software Revision Code of
the latest software. The "“Publication History” will also list
all manual changes for the current edition of the manual.

¢. On the top right-hand side of the “Manual Change
Notice” cover page for a manual change package.

Good preventative housekeeping requires that updated
documentation replace older versions as soon as it is re-
ceived, and that the Software Revision Code of a manual
always match the code on the software being used!!

PROGRAMMATICALLY UPPING A
DEVICE IN RTE

Larry W. Smith/DSD

You say, “How could RTE ruin my personal fife?" Well, that's

exactly what could happen if you were to get called out of

bed by the graveyard operator, drive 30 miles to work, just
for the thrill of entering the 'UP,eqt’ command on the system
console. The coupler controller can now resume operation.
Sound bizarre? Well, those of you with rings under your eyes
might appreciate the information presented in this article.

For sake of brevity, this story is authenic and the individual
who lives it is not alone.

The above incident was relayed to me by an HP employee at
our Stanford Park Division in vivid detail and | was asked for
advice on the matter. This individual wanted to know how to
make sure that the coupler controller (DVR66) would always
remain up regardless of the state of the device. The purpose
of this article is to present a solution to this problem and
refresh your memory on how the RTE system and driver
handle /O requests.

A LITTLE I/O REVIEW

Let us briefly review situations in which a device could be

declared down by RTE before we discuss a solution to the
problem. If you'll recall, a device is initially declared down by
the driver rejecting an /O request due to a bad initial status
return from the interface. This further assumes that the de-
vice has the capability of returning status bits so the driver
can determine whether it is powered down, not ready, or

otherwise. If the driver determines that the device is unavail-

able and needs operator attention, then RTE downs either
the LU (RTE-!1I) or the EQT (RTE-II) and then prints one of the
following messages indicating the reason for reject on the
system console (LU=1):

DEVICE CONDITION... MESSAGE...

1. Not Ready I’/0O0NR L6 E 4S50

n

Parity Error I’/OPEL B8E 7S 2

3. End-of-Tape I’/OETLS5EZ2S1

4. Time-0Out 1,0 TO L23 E10 S24
If the device does not have appropriate status line(s) (such
as the paper tape reader), then the driver must rely upon its
status posted in bits 0-6 of EQT word 5 on previous inter-
rupts or time-outs to evaluate possible errors and line consis-
tency. In addition, the driver can also set bit 14 of EQT word
5 to indicate that the device is down so that RTE can put
other programs requesting 1/O in the general wait list. If the
driver chooses to do this and then issue a normal continua-
tion return to RTE, no message is printed on the system
console, but the device will still be downed by RTE next
clock interrupt. All in all, whenever RTE determines that the
device is down by examining bit 14 of EQT word 5, it puts the
calling program into the general wait list (state=3), making it
swappable, and then envokes the dispatcher to put the next
highest priority program into execution. The net result is that
operator intervention or a programatic call to MESSS or
$$CMD is required to resume program execution and put
the device back into operation. If, on the other hand, the
driver chooses 1o send a reject code back to RTE instead to
indicate device unavailability, RTE prints one of the above
messages and downs the LU or EQT. In RTE-Ill, the LU is
downed but the EQT remains up unless the driver sets bit 14
of EQT word 4 or the operator enters the ‘DN,egt’ command.
In either RTE-Il or RTE-Il, the EQT must be declared up.

THE PROBLEM

We need to construct a method of ensuring that a device will
always remain available (UP) such that operator intervention
can be eliminated. The solution presented in this article is
primarily for RTE-1Il and must be modified slightly relative to
the EQT for RTE-II.

A SOLUTION

Let's assume that a program is periodically requesting /O
on a device in which its driver is capable of detecting a line
failure and informing RTE that the device is to be declared
down. Furthermore, lets also assume the device can be put
into this state at any given time by the operator for such

things as off-line usage or simply a power-down or discon-
nect. Since the driver must be envoked in order to determine
whether it is available, a status request from the program
would not be able to determine device availability. Recall, a
status request (code=13) does not call the driver but RTE
simply returns words 4 and 5 of the EQT and the LU status

18

(RTE-II ONLY). Thus, the only SAFE solution would be to
write an independent program which is scheduled periodi-
cally to UP the LU if it went down. Let's call this program a
‘line monitor’ with the program name

UPIT
and give it the sole responsibility of guaranteeing that the LU
is always UP. lts flow would be as follows:

START

L

Retrieve
LU Range

NO

Terminate
OF ,UPIT 1

9

YES

Get LU
Status

!

NO
Y

Schedule
$$CMD
toup EQT

NO

ES
Last LU? -
ES

Y

Terminate &
Save Resources

Now, by specifying this routine as a memory-resident pro-
gram or reserving it to run in a specific partition (RTE-I
ONLY) to avoid scheduling and swapping overhead, you
have yourself a method of ensuring the stability of one or
more lines.

The program “UPIT would look like this:
TN4,L
PROGRAM UPITC1,10)

THIS PROGRAM |S SCHEDULED PERIODICALLY, RETRIEVES A
RANGE OF SYSTEM LU’S, AND ENSURES THAT THEY ARE ALL UP.

PROGRAM SCHEDULE ;
IT,UPIT,res,multl ,hourl,minl,secl,ms111]
ON,UPIT ,NOW[,start-LUI yending-LU]]

start-LU ---> start lu to check (defaultenone)
ending-LU ---> ending lu (default=none)

000000000000 O™M

. THE BIT BUGKE

DIMENSION LUNCS), ICMND(3)

EQUIVALENCECLUN1 ,LUNC1)),CLUN2,LUNC2)),(LUN3,LUNC3))

EQUIVALENCECLUNAD,LUNC4)),(NLUN,LUNCS)), CICMND1,
&ICMND(C1))

DATA ICMND/2Hs$$,2HCM,2HD /
. RETRIEVE LU RANGE & VALIDATE RANGE ...

o000 (9]

1 CALL RMPARCLUN1)
NLUN=IGET(1653B)
IFCLU1.GT.0.0R.LUNT.LE.NLUN,OR.
&-LUN2,.GT.0.0R.LUN2.LE.NLUN) GO TO 10

. BAD NEWS (ONE OR MORE LU’S BAD) TERMINATE & REMOVE FROM
TIME LIST ...

OO0

ITERM=3
GO TO 999

... GET STATUS OF EACH LU & IF DOWN, UP IT ...

OO0

10 LUNAD=IGET(1652B)-1
DO 200 LUNN=LUN1,LUN2
LUNADJ=LUNAD+LUNN

30 IFCIGETC(LUNADJ+NLUNY>150,200

. 1T 1S DOWN QUEUE SCHEDULE $$CMD AND PASS *UP ,eqt’
COMMAND . ..

0OO0O0

160 IEQT=]ANDCIGETCLUNADJ),77B)
IFCIEQT.EQ.0)> GO TO 200
CALL EXEC(23,1CMND1,2HUP,IEQT,-1,-1
200 CONTINUE

1

c
C... TERMINATE PROGRAM EXECUTION ...
c

ITERM=1
999 CALL EXEC(6,0, I TERM,LUNT,LUN2)
GO TO1

[
99999 END

For RTE-II, you would simply pass on EQT range upon
schedule and send ‘UP,eqt’ commands to $$CMD in which
case 'LUSTAT (computed by ‘LUNAD+NLUN' in line 41 of
‘UPIT") would not be available and bit 14 of EQT word 5
would have to be examined instead.

CONCLUSION

The above solution is implemented entirely in FORTRAN IV
which relies upon an external integer function 'IGET that isin
the RTE library to retrieve the contents of memory, namely
system base page locations 1652 (DRT address) and 1653
(#DRTS) to avoid making a call to MESSS. Although the
program is systems-oriented and optimized to minimize sys-
tem overhead, it illustrates still another example of the flexi-
bility and control the user can exhibit on-line in RTE.

HOW TO USE CLASS I/O AND
RESOURCE NUMBERS IN A
SORT APPLICATION

Jim Bridges/DSD

Class I/O and Resource Numbers are two powerful concepts
which often are not used on the System 1000 due to lack of

19

understanding. The sample programs “GETEM” and
“SORTM” included in this article illustrate and comment
upon these concepts.

The basic task which this example addresses is a familiar
one — that of sorting records. The fastest and simplest sort
is performed on an array in memory. This places a limit on
the amount of data that can be sorted to that which will fit into
memory. It also forces the programmer to consider how to
miminize the memory used by the sorting procedure itself so
that as much as possible can be used for the data. In
addition, there must be some way of transmitting the sorted
output to a program which can use it: presumably, this
program is not attached to the sort procedure and the data
array because that would limit the data array even further.

Class I/O and Resource Numbers are powerful tools in ad-
dressing this problem. The technique is to separate the sort
procedure and the data into a program with minimum over-
head code. The “mailbox” scheme described in the RTE
reference manual is the method used to pass data between
the sort program and any other program which can obtain or
use the data. The mailbox scheme employs a class number
(a unique tag for the data) and the area of memory called
“SAM" (system available memory) as a buffer accessible to
co-operating programs. The resource number concept is
used to synchronize programs so no program monopolizes
SAM and thus makes the system “sluggish”. SAM is used in
a number of ways that are transparent to the programmer
and usually there are limits to the amount of memory a
program can use up. (Memory is, in most cases, “used up”
only temporarily and returned when not needed.) Class 1/O
gives a programmer a greater flexibility in the amount of
SAM used (he can use it all, if he choses) but places greater
emphasis on using it “intelligently”.

The sample programs include several comments to help
follow the code. "GETEM” is a “skeleton” program which
would be “fleshed out” according to the user application. It
allocates a resource number locally (meaning only this pro-
gram is entitled to release the number) and locks it globally
(meaning other programs can lock and unlock the number).
The feature which permits synchronization of data transferis
the action taken when a lock request is made with a lock
already on. In this case the second lock request causes a
suspension of the requesting program. The global nature of
the lock permits another program to unlock the number and
restart the program. In this example, GETEM performs both
lock requests, the second just prior to writing a buffer to SAM
via class I/O. If this technique (or equivalent) were not used,
GETEM could fill up all of SAM before SORTM were ready to
pick up any data at all. In the interim, the entire system would
be "“bogged down". Perhaps, due to priorities of competing
programs, SORTM would never execute and then a dead-
lock could occur.

"HE BIT BUCKE

A similar synchronizing sequence is built into SORTM, which
has the capability to transmit the sorted data through class
I/O (however, a program to receive is not inciuded). Note
that SORTM has four separate tasks, which are selected
individually by the scheduling program (the “father”). Three
of these tasks result in a termination saving resources. This
means that, unless task 4 is specified, that the data can be
restored on several keys or returned from SORTM several
times after the array has been filled because it (the array)
remains intack after going dormant.

The actual sort procedure is called as a subroutine (SORT)
from SORTM. There are numerous ways to sort in memory
but one of the simplest and fastest is the SHELL sort
technique. A particular version of this routine used by the
author (coded in assembly language) is included because
many people learning on the System 1000 do not have the
time to research sorting techniques. It is hoped that it will
prove valuable.

It is important to note that arrays are stored sequentially by

column in memory. When passing a first word address (e.g.,
BUF(1,1}) you are passing a column — not a row of data. This
is also important when using the SORT procedure shown.

FTN4,L
PROGRAM GETEM (3,45),GET DATA AND PASS TO SORTM
INTEGER P(5),RN,ERR,CLASS,REC(12},LU,LIST,LEN,OFSET, TASK,
&CN®D

EQUIVALENCE (LU,P(1l)),
& (LIST,P(2))

(o]

CALL RMPAR (P}

ALLOCATE RN LOCALLY AND LOCK GLOBALLY
THEN GET CLASS NUMBER. GET DATA AND PASS TC SORTM

[eXeNeXs!

CALL RNRQ (12B,RN,ERR)

(o]

CLASS = 0
LEN = 12
OFSET = 0
TASK 1
CNWD 0
Il =

o

GET CLASS NUMBER

[sNeKe]

CALL EXEC (20,CNWD,REC,12,I1,I2,CLASS)

RELEASE BUFFER SENT OUT AND KEEP CLASS NUMBER

OO0

CLASS = IOR (CLASS,20060B)

CALL EXEC (21,CLASS,REC,12,I1,I2,13)

CALL EXEC (24,6HSORTM ,LEN,OFSET,CLASS,RN,TASK)
DO 500 I = 1,N

INRSERT CODE TO GET DATA FROM YOUR SOURCE
LOCK RN TO SUSPEND YOURSELF (DOUBLE LOCK) UNTIL SON SORTM
RELEASES LOCK. THEN SEND DATA TO SORTM.

[eXeXe¥oXs)

CALL RNRQ (2,RN,ERR)
500 CALL EXEC (20,CNWD,REC,12,I1,I12,CLASS)
C

C TAG Il NON-ZERO TO INDICATE DONE WITH DATA TO SORTM
C

I1 = 99

CALL EXEC (20,CNWD,REC,12,11,12,CLASS)

RELEASE RESOURCE AND CLASS NUMBERS AND TERMINATE SORTM

[eXeXel

CALL RNRy (408, RN, ERR)

CLASS = IAND (CLASS,1577778)

CALL EXEC (21,CLASS,REC,12,11,12,13)

CALL EXEC (24,6HSORTM ,LEN,OFSET,CLASS,RN,4)
END

ENLS

FTN4,L
PROGRAM SORTM (3,45),PERFORM IN-MEMORY SORT
INTEGER P(5),LEN ,OFSET,CLASS,RN,TASK,CNWD,ERR,REC(12,500)

[¢
EQUIVALENCE (LEN ,P(l)},
s (OFSET,P(2)),
& (CLASS, P(3)),
& (RN,P(4)),
& {TASK,P(5))

[¢

CALL RMPAR (P)
50 GO TO (100,200,300,400) TASK

C
C TASK = FILL UP ARRAY RECEIVED FROM FATHER
C UNRLOCK RN (FATHER HAS LOCKED TO SUSPEND) TO SYNCHRONIZE
C AND GET DATA THROUGH MAILBOX (CLASS) I/0O
C
100 I =0
CNWD = 0

110 I=1I+1
IF (I.GT.500) GO TO 700

C
CALL RNRQ (4,RN,ERR)
CALL EXEC (21,CLASS,REC(1,I},12,I1,12,I3)
IF (Il.EQ.0) GO TO 110
N=1-1
GO TO 900
C

C TASK = SORT AND EXIT
C

200 CALL SORT (REC(1,1),N,12,0FSET,LEN)
GO TO 900
C
C TASK = TRANSMIT ARRAY BACK TO FATHER. LOCK RN UNTIL FATHER
C UNLOCKS TO SYNCHRCNIZE
C
300 DO 350 I =1, N
CALL RNRQ (2,RN, ERR)
350 CALL EXEC (20,CNWD,REC{1,I),I1,12,CLASS)

GO TO 900
C
C TASK = TERMINATE AND CLEAR RESOURCES
C
400 CALL EXEC (6)
C

C “UNLESS SPECIFICALLY INSTRUCTED OTHERWISE, TERMINATE
C SAVING RESOURCES AFTER EACH TASK
C
900 CALL EXEC (6,0,1)
CALL RMPAR (P)
GO TO 50

C
C ERROR REPORT ON LU #l: TOO MANY RECORDS PASSED

C
700 CALL EXEC (2,1,8HSORTM ER,4)
CALL EXEC (2,1,8HBF OVFL ,4)

END
END$
ASMB,R,L
HED SHELL SORT WITH HIBBARD MODIFICATION TO IMPROVE SPEED
*
: CALL SORT {(ARRAY{1,1),COLS,ROWS,OFSET,LEN)
* ARRAY (1,1) = FIRST WORD OF ARRAY TO SORT
* COoLS = NUMBER OF COLUMNS
* ROWS = NO OF ROWS (FIELD LENGTH)
* OFSET = NO ROWS OFFSET INTO RECORD TO START SORT
* FIELD (ZERO EQUAL NO OFFSET)
* LEN = NO ROWS TO INCLUDE IN SORT FIELD (SIZE OF
* ITEM FOR COMPARISON TEST}
*
NAM SORT, 7
ENT SORT
EXT .ENTR,.MVW
BUFR NOP ARRAY TO SORT
SIZE NOP SIZE OF ARRAY
FL NOP FIELD LENGTH
OF NOP OFFSET INTO FIELD
KS NCP SIZE OF ITEM FOR COMPARISON
SORT NOP ENTRY POINT
JSB .ENTR
DEF BUFR GET PARAMETERS
LDA FL,I
STA FLEN SAVE FIELD LENGTH
LDA Ks,I
STA CNT SET COUNT FOR COMPARE TEST
LDA OF,I
STA OFSET SET OFFSET
LDA SIZE,I
STA N SET SIZE IN N
CMA, INA
STA MN MN = - M
CLB, INB

STB A

IE BIT BUCKE

RAL FIND LARGEST POWER K BSS 1
RBL OF 2 THAT IS ADDR1 BSS 1
ADA MN LESS THAN N ADDR2 8SS 1
SSA “ 8ss 1
JMP *-5 MN BSS 1
* M1 DEC -1
ADB M1 SUBTRACT ONE M2 DEC -2
STB M ONE DEC 1
SETM LDB M BFR DEF TBUF
BES TBUF BSS 40 THIS IS LIMIT OF SWAP BUFFER
STB M A EQU 0
SzB,RSS B EQU 1
JMP SORT, I END
* 3
COMPK LDA M
CMA, INA
ADA N
STA K K=N-=-M
LDA ONE
STA J J=1
LOOPI STA 1 I1=2J
ADA M1

3:: TESTJ ng? ‘::I'é‘: %; DONE WITH J EXPANDED CAPABILlTIES FOR
MPY FLEN MPY BY FIELD LENGTH NEw DRIVER

%’Ej\; ggggl SAVE ADDRESS LOW RECORD Melanie Fox/DSD
ADA M
e A versatile new driver featuring full-duplex asynchronous
A uER, modem support for Bell 103 or equivalent (Vadic 3400) type
IS5 SwAP SHAP TF NEEDED AND RETURN modems is now available,
CMA, INA
SWp Loorr r-1-m DVAOS5 (part number 92001-16035) is a modified version of
TESTI LDA 3 driver DVRO5 (to be used with Software Revision Code 1740
o K emn or greater) that provides all the capabilities of DVR05, plus
* 52 9 N modem support. The Multi-Terminal Monitor can be used for
- program development on user terminals with hardwireq
. DVAQ5 or DVAQS over modems. However, only hardwired
Shap woe ENTRY POINT FOR SWAP SUBROUTINE DVAO5 can be used with the system console — DVAO5 over
SWaPl Lon CTR. COUNTS WORDS FOR COMPARE TEST modems is intended for use only with user terminals.
ADA OFSET
QE’% §§§g% Both hardwired DVAO5 and DVAQO5 over modems can com-
ADB CTR municate with the RTE system in both ASCII or binary codes.
Lob 8.1
Sop.Iua DVAO5 is approximately 250 words larger than the largest
s Y EauAL? version of DVR05. DVRO05 ranges from approximately 900 to
son ¥o.'1s HIGH REC > LoW REC? 1350 words (depending on the terminal model) while the
JMP SWAP,I YLS. NO SWAP NEEDED. size of DVAQ5 is about 1600 words for all terminal models
NEXT e CTh (2635, 2640, 2644, 2645, and 2648).
CPA CNT
JMP SWAP, W N
Ly, Jup ampf ! PO MR COIRER RO A Calling formats for drivers DVRO5 and hardwired DVAQS are
Los BER identical. There are, however, three additional requests that
DEF FLEN allow modem support with DVAQO5.
LDA ADDR2
Lob ADDRL Information and procedures for writing FORTRAN or Assem-
o FLEN bly Language applications programs that call either of the
o R 2 drivers (DVR05 or DVAQO5) can be found in the RTE Drivers
I5B MR DVRO5/DVAD5 for HP 263x/264x Terminals manual (part
NOP number 92001-90015).
. JMP SWAP, I
pir e NG 0 COMPARE DVAOS will be supplied to all Software Subscription Service
IR o hop T e In COMBARE customers, and can also be ordered as an independent part
N Bss 1 by those customers that are not on the SSS list (contact your
J BSS 1 local HP Sales Office for more information).

21

FILLING STRINGS IN
FORTRAN ARRAYS

Jim Bridges/DSD

Oftenitis desired to initialize an array with ASCII characters.
Typically, the array will contain an error message or a
prompt to be issued to a terminal. Perhaps the array may be
initialized to key words to be used as search patterns over
an arbitrary field of text.

Most programmers will use DATA statements with 2H format,
€.9.

DATA IBUF/2HTH,2HIS,2HI ,2HS,2HA,2HST,2HRI ,2HNG/

whichis "THIS IS A STRING". This method of breaking down
strings into two character fields is tedious and makes the
code difficult to read. Two new features added to the FOR-

TRAN IV compiler (which was recently revised and issued
under a different part number, 90206-16092) make the job
easier:

e Ability to use up to 8 characters in the H format
¢ Named COMMON

If you use the extended H format, you must be careful to
match the size of the H field to the data type. The following is
a common error:

INTEGER IBUF (8)
DATA IBUF /8HTHIS IS ,8HA STRING/

Since the data type is integer, only the 2H field can be used.
The following EQUIVALENCE enables the programmer to
use the full 8H format:

INTEGER IBUF (8)

COMPLEX BUF (2)
EQUIVALENCE (BUF, IBUF)

DATA BUF /8HTHIS IS ,8HA STRING/

Since a complex variable has four words, 8H may be used to
fill the array. The COMPLEX type declaration was used only
so that the 8H format could be used and the individual
elements of the array will never actually contain complex
numeric quantities.

The limit on the number of words initialized at a time may be
removed entirely by using named COMMON and writing the
BLOCK DATA “subroutine” in assembly language rather
than FORTRAN. (This scheme requires very little knowledge
of assembly language). Consider the following FORTRAN
program and the symbol table printed by the compiler:

22

THE BIT BUCKET

PAGE 0001 FTN. 10:48 AMTUE., 10 AUG., 1976
0001 FTN4,L,T
0002 PROGRAM TRYIT
0003 COMMON/L1/MSG1(20)/L2/MSG2(20)
0004 CALL EXEC (2,15,M5G1,20)
0005 CALL EXEC (2,15,MSG2,20)
0006 END
FTN4 COMPILER: HP92060-16092 REV. 1726
##+ NO WARNINGS #+ NO ERRORS =+
PROGRAM = 00022 COMMON = 00000

PAGE 0002 TRYIT 10:48 AMTUE., 10 AUG., 1976

SYMBOL TABLE

NAME ADDRESS USAGE TYPE LOCATION
CLRID000001X SUBPROGRAM REAL EXTERNAL
EXEC 000002X SUBPROGRAM REAL EXTERNAL

L1

L1 000003X COMMON LABEL INTEGER EXTERNAL
L2 000004X COMMON LABEL INTEGER EXTERNAL
MSG1 000000+ ARRAY(#) INTEGER L COMMON
MSG1 000000+ ARRAY(+) INTEGER L COMMON

PAGE 0003 FTN. 10:48 AM TUE., 10 AUG., 1976
0007 END$

The following assembly language subroutine will fill in the
arrays MSG1 and MSG2:

ASMB,R,L
NAM LINES,7 DATA FOR FORTRAN STRINGS
ENT L1,L2

L1 ASC 14,THIS IS MY MESSAGE FOR MSG1
ASC 6,DATA ARRAY!!

L2 ASC 14,THIS IS MY MESSAGE FOR MSG2
ASC 6,DATA ARRAY!!
END
ENDs$

Named COMMON is treated quite differently than blank
COMMON in FORTRAN. The “name” creates an external
symbol (in this case, L1 and L2) but does not allocate stor-
age for the associated variables. Hence, the assembly lan-
guage “subroutine” (not really called or entered as sub-
routine) merely provides data to be linked into this storage
area by the LOADR (or generator).

The ASC pseudo operator in the assembler code is limited to
a field of 20 words. However, since multiple ASC'’s can be
coded sequentially, there is no practical limit to message
length.

L2

E BIT BU

* AM3B CALL-- Js8 JULIA JSB JULIS
JULIA AND JULIS, SYSTEM TIME/ A
* DEF TaUF DEF TBUF
DATE ROUTlNE * <RETURN POINT> <RETURN POINT>
* FTN4 EXAMPLE> PROGRAM TEST PROGRAM TEST
* DIMENSION ITBUF(6) DIMENSION ITBUF (8)
* CALL JULIA(ITBUF) CALL JULIS({ITBUF
. * CALL ABREG Y, IMONTH C ABREG {IDAY, IMONTH
Alan Tibbetts/DSD * 100 ;JSITE }LU,l‘égggl'gBUF : P wAR[f‘IfE (LU?léOO‘){I‘gBUF :
* RMAT ("TIME="6A2".") FORMAT (" TIME="8A2".")
* END END
It is often convenient to have listings or other hardcopy * OUTPUT-=> TIME=2305 06AUGTS. OR TIME=23:05:15 06AUGTS6.
dated, so that confusion will be kept to a minimum when % wTURi: AR Be e v bR L0 o oureur sueees
software is updated at short intervals. For example, the RTE N
FORTRAN compiler places the system time in the header of Y RN B A ke RD DATA SYSTEMS DIV.
each page : CUPERTINO, CA.
MSEC NOP
SECS NOP
The RTE system keeps track of the time, and will even share v map
it with you. The time is kept in memory at system entry point DAYS Nop
$TIME. The first two words are the number of 10’'s of mil- e
liseconds until midnight (in 2's complement), and the next JuLia 200 *
word is the day of the year and the year in a binary format. RETRN NOP

. JSB .ENTR GET RETURN ADDRESS
This is very handy if you wish to compute elapsed time, just N DEF OBUF
read $TIME before and after the event and take the differ- Mo GO SEE WHAT TIME IT IS .
ence. (Remember, it is in 10’s of milliseconds.) BoF metc .

DEF YEAR * ok
The other way the System time can be accessed is by an : NOW TRANSFER STUFF TO USER
EXEC call. The RTE time request, CALL EXEC (11,ITIME itederd prke owee myrE Auphese.
[,|YEAR]), returns the array; ' LDA HRS GET THE HOUR OF THE DAY
JSB B2DEC CONVERT IT AND STORE IT
IFN
COLO
. ég? Y PUT IN A COLON FOR A SEPARATOR
ITIMEC1) = 10's of milliseconds LPA MINS GET THE MINUTES PAST THE HOUR
ITIMEC2) = Seconds Trw pEe conveRt
ITIMEC(3) = Minutes sor X
ITIME(4) — HOUrS 322 Sgggc CONVERT THE SECONDS IF JULIS
. IF
ITIME(S) = serial day of year (e.g., 253) LR BLNE
N SBT STORE TIME/DATE SEPARATOR
IYEAR = Year (e.g., 1975) (optional) .o SAVE THE POINTER
* TEST FOR LEAP YEAR AND COMPUTE DAY OF MONTH
LDA YEAR IS THIS A LEAP YEAR?
Although this is good because the values are separated for o CHECK CBAST 2 PITS
e . . =0 E
you, it is in a format which must be converted to something S7n, 85 17 0" YEaR WaS EVENLY DIVISIBLE BY FOUR
o . . S0 MAKE FEBRUARY BE 29 DAYS INSTEAD OF
else before it is useful to human beings. The following ADB D28 ThE NORMAL 28 DAYS
. . . . STB MOTBL+1 AND STORE 1T.
FORTRAN callable routine will return the time in a ready to N . :

. . * FOR THE PJRIST, DIVIDING BY 4 TO TEST FOR LEAP YEARS IS
print (A2) format. Note that the routine can be assembled to L Jor A SUFFICIENT TEST, HUT THIS BASY TEST WILL NOT CAUSE AN
return the time to the second or to the minute, depending " oa pAv NO; .mm our DAY OF HONTH
upon your needs. Although the routine as written is useable Sta TEMP SET UP POINTER 10 TABLE OF DAYS IN NO.
only on MX or XE, the Contributed Library has an emulator . cMa, TN MAKE IT NEGATIVE
package to help those of you with the older machines. LD Y eMp COUNT [HE MONTUS IN Y REG.

- _ M- ADA TEMP, T SUBTRAC NE 'Td
(22682-18965 on paper tape, or 22682-13365 on mini ?Si - T O T ot il 100 FAR
cartridge) R wP ML
ADA'TEMP, 1 NOW HAVE BAYS TN MONTI
ASMB,R,N,L,C STA DAYS SAVE TU PASS BACK IN A KBG.
HED JULIAN TIME ROUTINES 1SEP77 : NOW PASS THE REMAINDER TO USER
IF2
NAM JULIA,7 TIME ROUTINE A.T. 1SEP77 <<21MX ONLY!>> * XBX GET THE QUTPUT POINTER BACK
ib;g JULLA JSB B2DEC CONVERT DAYS TO ASCIT
IEN CYA GET MONTH NUMBER (1 TO 12) FROM Y
E:¥ 332%2,7 TIME ROUTINE A.T. 1SEP77 <<21MX ONLY!>> i{g rEme MULTIPLY IT BY 3
XIF ADA TEMP (3 TO 36)
EXT EXEC,.ENTR ADA DMOT ADD BYTE ADDRESS ADJUSTED BY -3
* MBT D3 AND MOVE THE 3 LETTERS POINTED TO BY AREG
* TAIS PROGRAM CONVERTS THE RTE ORDINAL DAY TIMS TC "MILITARY" Lba YEAR CET THE YFAR !
LIS SR OIS, T TINE hap ST 19 Tne rmete 1 L SRERE comBi IR MTESR L e e
: A AND B REGISTERS. XBY SET B=MONTH NUMBER
N ASSEMBLY OPTION 2 ASSEMBLY OPTION N R 1l han hepay OF TAE MONTH

FOR TIME TO MINUTES FOR TIME TO SECONDS

23

B2DEC

NOP
XBX

BINARY TO DECIMAL CONVERSION

CLB
DIV
XBX
ADA
SBT
CXA
ADA K60

ASSUMING THE NUMBER 1S OF FORM A=N*10+M,
DIVIDE BY 10 TO SEPARATE N AND M, THEN
ADD ASCII 0 TO MAKE THEM PRINTABLE

D10

K60

STORE THE M.S. DIGIT FROM AREG TO USER.
GET THE L.S. DIGIT BACK

MAKE IT ASCII

SBT AND STORE IT TOO.

JMP B2DEC, I

*
M1900
D3
D10

DEC ~1900
DEC 3
DEC 10

REVISE IN YEAR 2000, PLEASE.

KNOW THY COMPUTER

Alan Tibbetts/DSD

When you need to determine at run time which 21XX
machine your program is running in, say for loading different
microcode routines, you can use the following short section
of code.

CLA,CCE CLEAR A REGISTER AND SET E

ERA MAKE A = 100000

CCB MAKE B = 177777

0CT 100060 EXECUTE A "FUNNY' INSTRUCTION
NOP NEEDED TO PREVENT BAD THINGS

When this is executed, you will find that the A and B register
contents are different values, depending upon the machine
that was used to execute the code.

24

f p11 DEC 11
D28 DEC 28
K60 OCT 000060 ASCI1 ZERO
BLNK ASC 1, TWO ASCII BLANKS
1FN
COLON ASC 1,:: TWO ASCII COLONS
XIF
SuP
DAYM DEF MOTBL-1
MOTBL DEC 31,28,31,30,31,30,31,31,30,31,30,31
DMOT DBR *-1 THREE LESS THAN THE BYTE ADDRESS OF *+1

ASC 18 ,JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC
BSS 0 REVEAL LENGTH OF PROGRAM
END

MACHINE TYPE: 21MX-E 21MX-M 2100ACEAU)> 2116C
A REGISTER: 100000 000000 000000
B REGISTER: 000000 040000 100000

2114B
100000 100000
177777 177777

Note that this program uses an “illegal” instruction, the OCT
100060 (sort of a LLS,ALS combination), which is not exe-
cuted the same way in the different machines. Although the
2116 and 2114 are not micro-programmable, the information
is included for comparison.

If you wish to find out what operating system is running the
program, refer to "$OPSY — OPERATING SYSTEM TYPE” in
the System 1000 Communicator, issue 13, pg. 26.

AUTO BOOT-UP FOR 21MXE
COMPUTERS

Marlu Allan/DSD

The auto boot-up/RPL capability available with the HP 21MX
E-Series computer has been enhanced to provide more
flexibility. The new 21MX E-Series computer (21098/2113B)
contains a new power supply that is not dependent on a
reset signal, so the full capability of auto boot-up/RPL can be
realized. Soon all disc based HP 1000 Computer Systems
sold will utilize auto boot-up/RPL. These systems will come
up running when power is applied. The manual system boot
which involved loading the S-Register with boot-up informa-
tion (Loader ROM selection, loading device select code,
channel selection on loading device), pressing PRESET, IBL
and RUN is eliminated. All of the functions just described will
be done automatically when power is applied to the system,
or when a HLT instruction, 1060XX or 1070XX, is executed.

Three Loader ROMs are available for use with auto boot-
up/RPL for loading from various devices. The 129928
(7905/20) Disc Loader ROM and the new 12992F (7900/01)
Disc Loader ROM programs perform disc status checks
before attempting to read from the disc. This allows the disc
time to reach the READY state after power has been applied.
The 12992E Flexible Disc Loader ROM can be used also.

The auto boot-up/RPL definition for the HP 21MX E-Series
computers (2109A/2113A, A-Model) has been modified to
provide more flexibility. The old definition is:

DESCRIPTOR

BLOCK SWITCH B 7 6 5 4 3 2 1 (closed=1)

CORRESPONDING

S-REGBIT 15 14 10 9 8 7 6 0
SWITCH
FUNCTIONS LOADER SELECT CODE *RPL enable
ROM 0=not enabled
i=enabled

25

HARDWAR

The new definition of RPL for the HP 21MX E-Series com-
puter (2109B/2113B, ‘B-Model’) is:

DESCRIPTOR
BLOCK SWITCH 8 7 6 5 4 3 2 1 (clomed=1)
CORRESPONDING
S-REG BIT 15 14 10 9 8 7 6 0
SWITCH
FUNCTIONS RPL SELECT CODE CHANNEL
enable & SELECT
LOADER
ROM

Descriptor block switch 8 acts as an RPL enable:

Switch 8 closed=1
open=0

RPL enabled
RPL not enabled

As illustrated above, auto boot-up/RPL for the HP 21MX
E-Series computer (2109B/2113B) allows selection of loader
ROMs 10 or 11, select code, and the additional capability of
channel selection.

Once the switches are configured, the computer will take
appropriate action if auto boot-up/RPL is enabled. If it is
enabled, then on power up or HLT(1060XX or 1070XX only)
the microcode of the base set will store the configuration
switches into the appropriate S-Register bits, jump to the 1BL
microcode routine, and jump to the RUN microcode routine
which issues a RUN signal to the computer.

The auto boot-up/RPL capability allows the flexibility of boot-
ing from various devices and choosing the device channe!
from which to boot-up. Operator front panel interaction is
kept to a minimum when using auto boot-up/RPL, since time
consuming front panel operations are performed automat-
ically under auto boot-up/RPL control.

BULLETINS

NEW CONTRIBUTED PROGRAMS
DATA SYSTEMS LOCUS

Melanie Van Vl0iet/{DSD

This article serves as an update for the Data Systems
LOCUS Program Catalog (22000-90099).

The new contributed programs listed below are now avail-
able. Contact your local HP Sales Office to order Contributed
Library material, or (if you are in the U.S.) you can use the
Direct Mail Order form at the back of the COMMUNICATOR

1000.

22682-18971

22682-10972

UPIT - RTE DEVICE LU UP

This program allows the RTE user to en-
sure that a range of device LU’s are al-
ways up. It can be time-scheduled or
scheduled once. UPIT could be called a
line monitor. The routine is optimized for
Real-Time and requires little resources of
RTE. This routine is a must if you cannot
afford operator intervention simply to
make a device available.

22682-18971
22682-13371

PT $10.00
Cass $35.00

GCOPY RTE 7900/7905 TO MULTIPLE
FLEXIBLE DISCS

GCOPY copies one 7900/7905, 96 sector/
track, disc LU, to multiple flexible discs
(60 sectors/tracks) in File Manager format.
in other words, one 7900/7905 disc logical
unit maps to multiple flexible disc car-
tridges. GCOPY starts at the top of the
7900/7905 directory and copies as many
files as it can to the first flexible disc. It
then asks for the next disc. This continues
until all discs are copied. The user also
has the option of skipping a disc or
number of discs. By skipping through all
the discs the first time, the user may de-
termine the number of flexible discs
needed for the copy. A directory list may
be obtained for each flexible disc.

26

22682-18974

22682-10975

NOTE: Only one 7900/7905 directory
track is allowed. No extents are
allowed on source disc.

22682-10972 800 BPI MT $40.00
22682-11972 1600 BPI MT $40.00
22682-13372 Cass $35.00

RTE READABLE PUNCH ROUTINE
WITH SYSTEM DATE AND TIME

RDBLP - Does a look-up table conversion
of an ASCH input buffer to a binary output
buffer. The words in the output buffer are
readable characters when punched on
paper tape. Converts 64 character ASCII
subset of upper case, numerals, and
symbols.

JULIA/JULIS - Returns system time as a
string:

FORMAT --- JULIA
1234 10DEC77

JULIS

01:23:15 25JAN77

The day of the month is returned in the
A-register and the month in the B-register.

TITLE - Puts a readable title, optionally
containing the time/date, on a paper tape.
The input is either from the string in the
schedule call, or interactively from a
terminal.

22682-18974 PT $10.00

12555B D TO A RTE DRIVER

DVR55 is a RTE [, 11, 11l & M Driver for the
125558 Digital-to-Analog Converter Inter-
face Card. DVR55 processes four write
requests and two control requests as
listed below. Write Requests:

(1) Write to subchannel 0 - subfunction
bit 6 set. First word in buffer is used
as | * 10MS delay for outputting arrays
in future write requests. “I" is the in-
teger value of the first word in the
buffer. I.LE., CALL EXEC (2,-
LU+100B,1,1)

(2} Write to subchannel 0 - no subfunc-
tion bits set. Output low haif (1st 8
bits) to channel 1 of 12555B. Output
high half (2nd 8 bits) to channel 2 of
12555B.

(3) Write to subchannel 1. Qutput low half
of buffer word to channel 1 of 12555B.
Channel 2 remains as previously pro-
grammed.

(4) Write to subchannel 2. Output low half
of buffer word to channel 2 ot 12555B.
Channel 1 remains as previously pro-
grammed.

Control Requests:

(1) Control O - set both channels to 0 volts
and clear the buffer rate output (EQT
WD 14 to 0).

27

BULLETINS

(2) Control subfunction bit 6 set - perform
erase function and set both channels
to 0 volts and clear buffer rate output.

DVR55 does not perform the refresh func-
tion and is not intended for graphics on a
non-storage-type scope. DVR55 is in-
tended for D to A operations (including
stair step in 10MS increments), driving X-Y
plotters or for graphics on storage-type
SCopes.

22682-10975 800 BRI MT $40.00
22682-11975 1600 BPI MT $40.00
22682-13375 Cass $40.00

BULLETINS

DOCUMENTATION

The following tables list currently available customer
manuals for Data Systems Division products. This list super-
sedes the list in the last issue of the COMMUNICATOR 1000.

The most recent changes to the tables are indicated for easy
reference. Prices are subject to change without notice.

Copies of manuals and updates can be obtained from your
local Sales and Service office. The address and telephone
number of the office nearest to you are listed in the back of
all customer manuals.

Update packages are free of charge. If you require an up-
date package only, send your request to:

Software/Publications Distribution
11000 Wolfe Road
Cupertino, CA. 95014

Customers in the U.S. may also order directly by mail. Simply
list the name and part number of the manual(s) you need on
the Corporate Parts Center form supplied at the back of the
COMMUNICATOR 1000.

1000 SYSTEM MANUALS

A few words about documentation terms:

New

Revised

Update

A new manual refers only to the first printing of a
manual. When first printed, a manual is assigned
a part number.

A revised manual is a printing of an existing
manual which incorporates new and/or changed
information in its contents. For example, a
manual is revised when an update package is
incorporated into the manual: the manual gets a
new print date and the update package disap-
pears. Note that a revision to a manual effec-
tively obsoletes the previous version of the
manual.

An update package is a supplement to an exist-

ing manual which contains new and/or changed
information. Updates are issued when informa-
tion must get to customers, yet it is inappropriate
to issue a revised manual. An update has no

part number; it is automatically included when
you order the manual with which it is associated.

PART
NUMBER MANUAL TITLE PRICE DATE UPDATE
02170-90006 | HP 1000 Computer System Instailation and Service $ 2.50 7177
02172-90005 | Getting Started with Your HP 1000 Disc Based Computer System 4.00 6/77
(for A computers)
02172-90010 | Getting Started with Your HP 1000 Disc Based Computer System 2.50 8/77
(for B computers)
02173-90007 | Getting Started with Your HP 1000 System: Models 20 and 21 2.50 8/77
91780-93001 RJE/1000 Programming Manual 9.50 11/76 6/77
RTE SYSTEMS MANUALS
PART
NUMBER MANUAL TITLE PRICE DATE UPDATE
02313-93002 | RTE 2313B Analog-Digital Interface Subsystem Operating and Service Manual $30.00 8/76
02320-93002 | RTE System Driver DVR76 for HP 2320A Low Speed Data Acquisition Subsystem 1.00 8/74
Programming and Operating Manual
02321-93001 { RTE System Driver DVR 74 for HP 2321A Low Speed Data Acquisition Subsystem 1.00 8/74
Programming and Operating Manual
09600-93010 | RTE System DVR11 for HP 2892A Card Reader Programming and Operating Manual 1.00 8/74
09600-93015 | 91200B TV Interface Kit; Programming and Operating Manual 4.50 7175 1176
09601-93007 | RTE Device Subroutine for HP 5327 A/B-H48 Counter 2.50 12/74
09601-93009 | RTE Device Subroutine for HP 5326A-H18 Counter 2.50 12/74
09601-93015 | RTE for 40-bit Output Register # 12556B 1.00 10/74
09603-93001 | 9603A/9604A Control System and Scientific Measurement Operating and 7.50 5/76
Service Manual

28

BULLETINS

RTE SYSTEMS MANUALS (Continued)

PART
NUMBER MANUAL TITLE PRICE DATE UPDATE

09610-93003 | ISA FORTRAN Extension Package Reference Manual $ 450 7/76
09611-90009 | 9611A Operating 406 industrial Measurement and Control System 25 4/75
09611-90010 | HP 6940A/B Multiprogrammer Verification Manual 4.50 8/75
12604-93002 | RTE DVR40 for 12604B Data Source Interface 1.00 8/74
12665-93001 | RTE System Driver DVR65 for HP 12771A Computer Serial Interface Kit 1.00 8/74
12732-90001 | RTE Driver DVR33 Programming Manual 2.00 2177
13197-90001 | RTE Driver DVR36 Programming and Operating Manual 3.00 9/76
24998-90001 | DOS/RTE Relocatable Library Reference Manual 10.00 5/77
25117-93003 | RTE System Driver DVR24 for HP 7970 Series Digital Magnetic Tape Unit 1.00 8/74
29003-93001 [RTE System Driver DVR66 for HP 12772A Coupler Modem Interface Kit 1.00 8/74

Programming and Operating Manual
29003-93003 | RTE System Driver DVR66 for HP 12770A Coupler Serial Interface Kit 1.00 8/74

Programming and Operating Manual
29009-93001 | RTE System Driver DVR62 for HP 2313B Subsystem 2.50 8/74
29028-95001 | RTE HP 2610A/2614A Line Printer Driver 1.50 8/73
29029-95001 | Real-Time Executive System Driver DVR0O for Multiple Device System Control Smal 1.50 11/75

Programs Manual
29100-93001 | RTE System Driver DVR40 (29100-60041) for HP 126048 Data Source Interface 1.00 8/76

Programming and Operating Manual
29101-93001 | RTE Core-Based Software System Users Manual 10.00 1/76
29102-93001 | RTE BASIC Software System Programming and Operating Manual 10.00 3/74 8/75
29103-93001 | RTE System Cross Loader; Programming and Operating Manual 2.50 12/76 5/77
59310-90063 | DVR37 Manual 3.50 6/77
59310-90064 | HP-IB Interface Bus /O Kit Users Guide 8.50 477 6/77
91060-93005 | RTE Driver for X-Y Display Storage Subsystem (HP Model 1331C-016) Programming 1.00 8/74

and Operating Manual
91062-93003 | Real-Time Executive System Driver for DVM/Scanner Subsystem 9.00 8/74
91700-93001 | Distributed System CCE Operating Manual 20.00 5/77 9/77
91705-93001 | Distributed System SCE/5 Operating Manual 15.00 12/76
91200-90005 | RTE Driver DVA13 for TV Interface (HP 912008) 1.50 5/77
92001-90015 | RTE DVRO5 for 264X Terminals 2.00 9/76
92001-93001 | RTE-ll Software System Programming and Operating Manual 10.00 7177 8/77
92060-90004 | RTE-IIl Software System Programming and Operating Manual 12.00 7177 8/77
92060-90005 | RTE Assembler Reference Manual 7.00 12/76
92060-90009 | RTE-Ill General Information Manual 4.00 2/76
92060-90010 | RTE Batch/Spool Monitor and Operating System Pocket Guide 3.00 4/77
92060-90012 | RTE: A Guide for New Users 6.50 7/76
92060-90013 | Batch-Spool Monitor Reference Manual 9.50 377
92060-90014 | RTE Interactive Editor Reference Manual 6.00 577
92060-90017 | RTE Utility Programs 3.00 377
92060-90020 | RTE On-Line Generator 15.00 7177
92064-90002 { RTE-M Programmer’s Reference Manual 14.00 3177 777
92064-90003 | RTE-M System Generation Reference Manual 7.50 3/77 777
92064-90004 | RTE-M Editor Reference Manual 6.00 1/77 377
92064-90007 | RTE-M Pocket Guide 450 8/77°N
92200-93001 | RTE System Driver DVR12 for HP 2607A Line Printer Programming and 1.00 8/74

Operating Manual
92200-93005 | Real-Time Executive Operating System Drivers and Device Subroutine Manual 5.00 3/77
92202-93001 | RTE System Driver DVR23 for HP 7970 Series Digital Mag Tape Units Programming 1.00 8/74

and Operating Manual
92400-93001 | 92400A Utility Library Subroutine for Sensor-Based Diagnostics 7.50 11/76
93005-93005 | Thermal Line Printer Subsystem for Driver DVROO (RTE) 2.50 12/74

29

- BULLETINS

HARDWARE MANUALS

PART

NUMBER MANUAL TITLE PRICE DATE UPDATE
02108-90002 | HP 21MX M-Series Computer Reference Manual $ 550 6/76 7/76
02108-90006 | HP 21MX M-Series Computer Installation and Service Manual 10.00 7/76
02108-90004 | HP 21MX M-Series Computer Operators Manual 5.00 7/76
02108-90017 | 21MX M-Series Computer Engineering and Reference Documentation 125.00 5/77*R
02108-90027 | 21MX K-Series Computer Engineering and Reference Documentation 100.00 5/77*R
02109-90001 | HP 21MX E-Series Computer Operating and Reterence Manual 8.00 7I77*R
02109-90002 | HP 21MX E-Series Computer Installation and Service Manual 15.00 8/76 9/77
02109-90006 | HP 21MX M- and E-Series Computer 1/O Interfacing Guide 7.00 7/77T*R
02109-90014 | 21MX E-Series Computer HP 2109B and HP 2113B Operating and Reference Manual 8.00 8/77*N
02109-90015 | 21MX E-Series Computer HP 2109B and HP 2113B Installation and Service Manual 15.00 8/77*N 9/77
12732-90005 | HP 12732A/12733A Flexible Disc Subsystem Operating and Service Manual 5.50 8/77*R
12979-90006 | HP 12979A 1/O Extender Installation and Service Manual 15.00 6/77*R 9/77
12979-90007 | HP 12979A |/O Extender -Operating and Reference Manual 5.00 12/75 9/77
12979-90014 | HP 129798 Input/Output Extender Operating and Reference Manual 2.00 8/77*N
12979-90016 | HP 12979B Input/Output Extender Installation and Service Manual 12.00 8/77*N 8/77
12990-90003 | HP 12990A Memory Extender Installation and Service Manual 5.50 4/76 8/76
5950-3765 21MX E-Series Computer Technical Reference Manual 3.50 6/77*N

LANGUAGE MANUAL
PART

NUMBER MANUAL TITLE PRICE DATE UPDATE
02100-90140 | Decimal String Arithmetic Routines $ 6.50 2177
02108-90032 | HP 21MX M-Series Computer RTE Microprogramming Reference Manual 15.00 10/76 9/77
02108-90034 | HP 21MX M-Series Computer RTE Microprogramming Pocket Guide 2.75 1/77
02109-90004 | 21MX E-Series Computer RTE Microprogramming Reference Manual 20.00 3177
02109-90008 | 21MX E-Series Computer RTE Microprogramming Pocket Guide 2.50 11/76
02116-9014 HP Assembler Manual 6.50 8/75
02116-9015 HP FORTRAN Manual 6.00 177
02116-9016 Symbolic Editor 4.50 2174
02116-9072 ALGOL Reference Manual 10.00 11/76
12907-90010 { Implementing the HP 2100 Fast FORTRAN Processor 1.00 7/76
24307-90014 | DOS-lll Assembler Reference Manual 8.00 7/74 11/75
92060-90005 | RTE Assembler Reference Manual 7.00 12/76
92060-90016 | Multi-User Real-Time BASIC Reference Manual 12.00 2177 4477
92060-90023 | RTE FORTRAN IV Reference Manual 10.00 7177
92063-90001 | IMAGE/1000 Data Base Management System Reference Manual 9.00 2177 7/7T*R
92063-90004 | IMAGE/1000 Data Base Management System Pocket Guide 4.00 /77N
92065-90001 | RTE-M Real-Time BASIC Language Reference Manual 8.50 2177 7177

30

BULLETINS

SOFTWARE UPDATES

Following are cross-reference lists of the available 92001B, 320608, 32062A, and 92064A (options 20 & 40) software lmodu\les,
the media on which the software modules are distributed, and the date code or revision of each module up to, and including
level 1726. Software modules updated since the last issue are indicated for easy reference.

NOTE:

For each module, interdependencies with other modules may exist (i.e., any updated
module may require other updated modules to function properly).

SOFTWARE MODULE NUMBERS: 92001B LEVEL 1740 (RTE II)

The following modules are also available on a 7900 RTE Master Software Disc (#92001-13001), or a 7905 RTE Master
Software Disc (#92001-13101).

PAPER TAPF MOLULE DESCNIPTIUN CARTRIDGE DATE COCE
A2L07-1004 154l v7 24K SIU LLINE PRINTEK DRIVER 92¢21~-13305 1538
A LTS TR E-NPR AOVRLS RTE 72618 ORIVER Y2u62=13304 A
12732=1r01101 BOVES3 FLEXTRLE DISC DRIVEK 92062-13304 1726
1297v=160h0na 184mT 24K S10 MaG,TAPE DRIVFR 920 1=13305 1550
2074/ =birpnt ANVR3N RIE F1XED HEAD DISC DRIVER Q2¢62-13305 c
2¢EvB=Buyvy ALAL LS CAL. PLDOTTER DRIVER 92n62=-13372 B
2081i=h, Ui ACALIR Call, PLOTTEK LIBRARY 92062=133p2 c
2087 85mb, Ay LLIETM FURTRAN Malh CUONTROL §2V63=1330¢8 b
VBT S5=kyii2 A2F TN FURTRAN PASS 1 92062=13302¢ t
PR LY AT ISR AJFTH FORTRAN PASS 2 Y2060b=13308 E
2LB75«H1 W a LA4FTH FORTRAMN PaSS 3 9206¢=-1330R E
POLY ALY T AS5FTH FORTHAM PASS 4 YoPEU=1330A £
241%9=hy i) RALGOL RIE/NVS ALGDL PAKT G2062=13305 1643
241 29wmby 2y XALGLY RTE/DOS ALGDL PART 2 9206P«133005 o
24153=60001 XFF (N RTE/DOS FURMATTER GP2¢6n=13303 C
243¢ 8=k) LOECAR GOSH 8T ARITH Pk 92060=13303 A
CA9YR=1 A1) %KRILIPY RTE/NOS LIBRAKY PART 1§ $2nEp=133n2 1740 %
2439b=t] IR Y RTE/DUS LIBRARY PART 2 92060=133022 17402
24958=10002 AFFa M FURTRAN IV FAOKMATTER 9206213303 1726
25117=6045y ADVRZ 4 RYE 7970 7T MAG, TAPE DRIVFK 92062=13325 v
2981 3=6 000 AUVR I RTE 76lua NISC DRIVER Y2nh2-1330% 1712
29U2B =R 2 ANDVR12 RTF 276874 DrRIVER Y2062=13303 A
291M2Qmnir 2y] LDVME L RTF TTY/PUNCH/PHOTO READFK 92062=-133n2 174
29wnJIP=bLny AUVRLY RTE 28%24 CARD wEADER DRIVFER H20662=133413 171
29100 wmeyin]7 154LF 24k 510 LINE PRINTER 92071=133n5 A
29je=huRlR t54s5YN 24K SI0 SYSTEM DUMP 92071=-13305 A
2YUINP=hL]G 154PHR 24K SIN PRANTO READER 92eP1~13305 A
291 8RN 1S4PUN 24K SI1U TAPE PUNCH 92em1«13305 A
2910 =bing2 184167 24k SI10 2767 LINE PRINTER Y2re1=133M5 A
2Y1VA=bpR el 184r 12 24K SI0 797w MAG, TAPE 921@21=-133025 A
2917N=b1K a9 1S4MT3 24K SIND MaG, TAPE 92¢P1=133m5 A
29134=b1rhe 184TER 24K SI10 TERMINAL PRINTER 920@1~13305 A
59312=160¢2 L1uvyr RTE MP=]B WITHOUT SkG 92062~13304 1726
3931ve)tued X21.vs7 RTE HP=1b WITH SRU 92062+-13324 1726
5931P=160 4 XHP 1B HP=1B DEVICE SUBROUTINE 9206213304 1710
3931 0=16005 XSKRQ,P SRR,P TRAP UTILITY 92062-13304 1719
72¢08=610¢1 Xjovye COMP, 721PA PLOTTER DRIVER 92062~13302 A
7220M9=6nny] X20vie MIN, 721RA PLOTYER DRIVER 92062-13302 A
Jl2vn=160@1 X0vall 9129@A DRIVER 92062+13303 1648
912uu=16002 XTvL18 9120MA VIDEO MONITOR LIBRARY 92062+-13303 1648
F120¢=16V04a XTVVER 91200A TV INTERFACE VERIFIER 92062=13303 1648
0220b1=16003 XMTM MULT, TERMINAL MONITOR 92060«13301 8
S2001=1606% x8y_18 RTE SYSTEM LIBRARY 92060~133021 1740»
920v1=16n14 XAUTOR AUTO RESTART PROGRAM 92060~13310 1631
Q22V1=16020 XDVAL2 26@7/10/13/14/17/18 DRIVER 92062+13303 1334
92001~-16027 X40v05 RTE 2644/435 DRIVER 92086243302 1740»

31

BULLETINS

(Continued)
SOFTWARE MODULE NUMBERS: 920018 LEVEL 1740 (RTE II)

PAPEK TAPE MODULE OESCRIPTION CARTRIDGE DATE CODE
Q2uvi=10013 126GNDO RTE=I1 7907 OFFeL INE GEN, 92¢01-13303 1631
92¢b1=16014 XAUTOR AUTD RESTART PROGRAM S2¢v@1=13302 1631
920n1=-16018 {2GNFH RTE=I1 FIXED HEAD DISC GEN, 92001=13306 1631
9220116020 x0vAy2 2607/10/13/14/17/18 DRIVER 92062+13303 1534
921a1=16026 {2GNBS RTE=I1 7905 OFF=LINE GEMN, 92021133023 1631
920ni=160127 X4DVipS RTE 2644/45 DRIVER 92062~-13302 1740%
92¢01=16028 xebves RTE 2640A DRIVER 92062-13302 1740n
92001=16029 XSCmnh2 RTE=11 COMMAND PROGRAM 920P1-13301 1710
92nu1=16030 XWH212 RTE*I] WHZAT PROGRAM 92uM1«13302 1726
9eovi=16031 XRT26G1 RTE=I1 ON=LINE GENERATUR PT, 1 920°21=-13304 1704
92081=16431 XRT2G2 RTE=I] ONe__INE GENERATOR PT, 1| 9200113304 1704
92¢¢1=16034 XOVARS RTE DWIVER 264X MUDEM 92062~133m2 1740P=
92uvl=1b6014 RAUTOR AUTO RESTART SOURCE 92001~-13302 1631
2001 =18m33 LANDF D RTE=II 79v@ GFATHER aNSw FILE 920871=13307 1639
92¢21=18034 SANDF S RTE=IT 79045 GFATHER ANSm FILF 92001=13307 1631
92rnZ=12011 XBMPG Y RATCH MONITOR PROGRAM PART 1 92¢P2=-13301 1631
Gen¢2=12u¢1 XRMPG2 BATCH MONITUR RPROGRAM PART 2 920R2=-13301 1691
92842=12001 ABMPGY BATCH MUNITOR PROGRAM PART 3 92002-13321 1631
2rne=1enpe A2SP{1Y RTE=I1 SPOOL MOMNITOR PART 1 921R2=-13303 1631
92RazZ=12nn2 X2SP0? RYE=I1 SPODL MONITOKR PART 2 92022=-13303 1639
IZPV2=1LKIn6 X8ML 1B BATCH LIRBRARY 92002=-13302 1631
920u2=16R1¥ LELITR RTE EDITOR 92¢02-13302 c
92nt=12una LASMBE RTE ASSEMBLER 92nEN=-13304 1634
92vbu=120¢5 XCLIB RTE COMPILER LIBRARY 9206813315 1726
92rbvi=16U128 AXKREF CROSS REFERENCE 92060=13304 A
92vibun=16p31 4ADVR32 RTE 799%A DISC DRIVER 92P62=133075 a
QLNb=16bW3E XSWTCH RTE=1]1 SWITCH PROGRAM 92¢01=-13304 1710
Q2unir=16139 XSaVE SAVE FROGRAM y2060=-13309 1744
QLvubli=16740n XFESTH RESTOkE PROGRAM 92062-13309 1794
92rE=16041 LVEKFY NISC VERIFY PROGRAM 9206013509 17v4
Qibn=16042 %CLPY NISC COPY PROGRAM 92060=13309 1704
QenbN=1614a3 XDEKLB DISC BACK /P LIBRARY 92062=13309 1704
Y2abn=1tnsd IDSKUP NF+F LINE DISC BACK UP 92v6n=13309 1704
9266Aa=1614dhH LRLNAM READ NAMR PWNGRAM 92e?1=13302 16314
Y2abr=16052 IKEYS SUFT KEY ULTILITY $2e21=13002 1707
Fzhb=1605] ZKYDMP SOFT KEY DUMP UTILITY 920P1=13002 177
QZrRn=1b61y2 ZFTNa RTE FORTRAN IV MAIN 92p62=13316 1726
QLrOR=1OVYY LFFTNG RTE FORTRAN IV SEG F 9206P=-13316 1726
Y2ubr=100Y4a LPFTING RTE FORTRAN 1V SEG @ 92062+13316 1726
92n6a=1060YD $IFING RTE FORTRAN IV SEG 1 92060~13316 1726
QRUbU=16P96 L2FTNA RTE FORTRAN IV SEG 2 $2060=13316 1726
QL2r60=1hA097 X3FTHA RTE FORTRAN IV SEG 3 92060-13316 1726
G2060=16098 X4F TN4 RTE FORTRAN IV SEG 4 92060-13316 1726
9206VN=18046 SUPDAT UPDATE TRANSFER FILE 92001-13302 1740=
9206A=1K80R47 4PKDIS PACK DISC TRANSFER FILE 92001 ~13302 1631
92064=16086 YMSAFD FLEXIBLE DISC BACKUFP UTILITY 9206n=13309 1740
92202=-160¢1 ADVR23 RTE 797¢ 9T, MAG, TAPE DRIVER 921062=-13304 A
9292ne=16002 X2Dva7 RTE 929¢@A DRIVER WITHOUT DMS 92¢62=13302 1643
9290P=16003 x3Dvaz RTE 929¢MA DRIVER W]TR OMS 92v62=13302 1631

32

BULLETINS

SOFTWARE MODULE NUMBERS: 92060B LEVEL 1740 (RTE Il)

The following modules are also available on a 7900 RTE Master Software Disc (#92060-13001), or a
7905 RTE Master Software Disc (#92060-13101), or a 7920 RTE Master Software Disc (#92060-13201).

PaPFRr TAPE MOuLLE NDESCRIPTION CARTRINGE DATE CODE
A2bA7=160AN4 184Lwn? 24K SIO0D LINE PRINTER DRIVER 92021-133@5 1538
AY6L1=1bkg] LOVR Y RTE 72612 DRIVEK 92r62=-13374 A
12732=16M11 KCVRIY FLEXIBLE DISC DPRIVER 92¢62=-13304 1726
1297 v=)dcd 18S2amYy 24X SIN MAG, TAFE URIVER Y2uR1=-13325 1550
2747 =Ky) AUVR3IN RTE FIXED HEAD NISC DRIVER 92062=-13325 c
2uBh8=bitnnl XCAL LG CAL, PLUTYER DKRIVER G2n62-133m2 2}
2vH1n=bunnl *CAL IR CAL, PLOTTER LIBRARY Y2v62=-13302 o
PAL VAT AIFTN FUORTRAM MAIN CONTROL G2h6R=-13308 E
2viH7HebLiNn2 42FTN FORTRAM PASS Q206n=13306 3
2UB7S=huving AJFTIN FORTRAN PASS 2 G20v60-13308 E
2VE7S5=bvitlrd L4F TH FURTRAN PASS 3 Y2V6N=-13308 E
2valhehlit s L5k TN FORTRAN PASS 4 92P6Q0-13308 E
241 1¢Y=Fuvnal XaLGUL RTE/DOS ALGUL PART 1 G2P60=13305 1643
24129=-610G¢ LALGLY RTE/DDS ALGOL PART 2 9216U=13305 C
241%3=6y ey XFF N RTE/DOS FURMATTER 92060=13323 c
248 Febi 201 LDECAR DUSHM ST ARITH PK $2068-13323 A
P439B= 1P XkLIB] RTE/DDS LIBKARY PaRT | Q206N=13302 1740
240YR=160u] ARLIBR RIE/DOS LIBRARY PARY 2 92668=133802 1740«
240UB=100p2 %FFa N FOKTRAN IV FNORMATTER 92060P=13303 17¢6
25117=61.499 ADVK24 RTE 7979 77 MAG, TAPE DRTIVFR $2062-13305 D
294136t ADVRIL RTE 79¥va D1SC DR1VER 92062=13305 i710
29veB8ebinng IDVk12 RTE 27674 ORIVER 92162~13303 A
24¢29=60011 %DVRD W RTE TYY/PUNCH/PHOTOD READER Q2062-13302 174A»
2YM3R=6uun1 ADVR1Y RTE 28924 CARD READER DRIVER 92v62«-13303 1710
291 av=brnn1? LS4LP 24K SI0 LINE PRINTEK $2e71=-13305 A
Y91 AN=blnl b 1848YD 24K SID SYSTEM DUMP 92ve1~-1330n5 A
291 =6 vty {SaPHR 24X SI0 PHOTD READER $2021=-13305 a
2914r=hun2e 1S4PUIN 24K ST10 TAPE PUNCH 92101-13305 A
29190v=hpeg 184167 24K S10 2767 LINE PRINTER 928rP1-13305 A
29100=6ped 154MT2 24K SID 797¢ MAG,.TAFE Y2001=13345 A
291 Meh DAY 1S4MT3 24X SI0 MAG, TAPE 92P01=133025 A
291 liefinnsy 1SATER 24K SJ0 TERMINAL PRINTER S2001=13375 A
54%31=16002 *10Vv37 RTE HP=1R WITHOUT SRQ 92062~-13304 1726
5931A=100¢3 4220Vv37 RTE HP=IB WITH SRG 92062-133024 1726
39314=16n04 AHFIB HP=IH DEVICE SUBROUTINE 92062-13304 1711
5931 n=1bnibsd ASKU,P SRO,P TRAP UTILITY 92062-13304 1710
7T2WaB=ARRLY xiuvie COMP, 7210A PLOTTER DRIVER 92062-13302 A
720019«60001 12Dviw MIN, 721@A PLOTTEK DRIVER 92062«13302 A
912vA=16R01 XDVAL3 9122PA DRIVER 92062-13323 1648
912v¥N=16412 XTVL1B 91200A VIDEO MONITOR LIBRARY 92062-13393 1648
9120n¢=-16084 XTVVER 9120AA TV INTERFACE VERIFIER 92062-13303 1648
Q2021=160102 XLDR2 RTE LOADER s2eR1=13301 1726
92001~-16043 XMTM MULT, TERMINAL MONITOR 920@1=13321 B
92001=16004a X20P43 POWER FAILURE DRIVER 92001=13301 1633
920V 1=1600D XSYLIB RTE SYSTEM LIBRARY 02071-13301 1740
920P1=16012 XCR2SY CORE RESIDENT OPERATING 8YS, 92901=13301 1740+«

33

BULLETINS

(Continued)
SOFTWARE MODULE NUMBERS: 920608 LEVEL 1740 (RTE 1ll)

PAPER TAPE MODULE DESCRIPTION CARTRIDGE DATE CODE
92nu1=16n28 pves RTE 2646A DRIVEN 92062=13302 1740
92nb1=16035 IOVAGS RTE DRIVER 264X MQDEM 92062+13302 1740
920a1=18114 LAUTOR AUTO RESTART PROGKAM SOURCE 920602=13310 1634
926v2-12041 4BMPG Y BATCH MONITOR PROGRAM PART { 92002-13301 1631
92002=12000] %BMPG 2 BATCH MONITOR PROGRAM PART 2 92002-13301 1631
928v2=t1r0yiy REMPGY BATCH MONITUR PWROGRAM PART 3 92002-13301 1631
920N2-164vb ABML IR BATCH LIBRARY 920n2~13302 1631
92vi2=16914 LEDITR RTE EDITNR 92¢m2=13302 [+
G2nEP-1201y AASPO1 RTE=II1 SPOGL MOUNITOR PART { 92060~13313 1631
9236=12011 435P02 RTE=I11 SPQUL MONITOR PARY 2 92062~13313 1631
92Fbr=1200Y XCr3SY MEMORY RESIDENT SYSTEM 92060~13301 1740
922b¢=12¢ 4 XASMpE RTE ASSEMBLER 92¥60~13304 1639
9206¢=120¢v5 4CL1B RTF CUMPILER LIBRARY 9206013315 1726
92860=1buc1 X3LFay POWER FAILURE DRIVER 92060-13301 1633
3226N=361na EYMLN] RT1E=111 LOUADEK 92p60=1330Q1 1726
2e6a=16100 IWH7T3 HTE=IT1 WHZAT PROGRAM 92062-13310 1726
94360=16028 LXKEF CRNSS REFERENCE $2060-13324 A
92n60=16029 136N 7900 RTE=II1 GENERATOR 92060=13311 1631
92A6h=16M3] XDVR3? RTE 7g08a DISC DRIVER 9206213305 A
92vbn=16032 13LNES 7905 KTE=II]l GENERATUK 9206@~13311 1631
92460=16035 XSFVMP SPVMP 92060=13301 A
2060=16436 L$CMDI RTE=II11 COMMAND PKOGRAM 92060-13301 171
92060=1n037 ARTIGY RTF=IIl ON=LINE GENERATOR PT,! 920M6Q=13312 1704
2062=16137 ARTIG2 RTE-II1 ON=LINE GENERATOR PT,2 92060=13312 1704
2M6N=160138 ASWTCh RTE=IIl SWITCH PROGRAM 92860=13312 1710
92vbie16¥39 X8AVE SAVE PRQOGKAM 92p60-13309 1704
92060=160R4p XRESTR RESTQRE PROGRAM (RSTOR) ‘92060=13309 1784
9ertn=1tnay XVERFY DISC VERIFY PROGRAM 92060-13309 1704
Q2ubu=160n42 4CCPY DISC COPY PROGRAM 920608-13309 1724
92P6R=16114a3 YDbKLB OISk RACK UP [IBRARY 92060=-13309 1724
927a64=100a4a ‘DSKUP OFF LINE DISK RACK uP 92068=-13309 1704
92ARA=16014Y LRI NAM READ NAMR PROGRAM 92060813310 1631
G2NBN=160H2 AKEYS SOFT KEY UTILITY 92n62«13310 1707
9206P=16053 AKY[MP SOFT KFY LUMP LTILITY 92060=-13312 1707
Q2NbN=16092 xFTNa RTIF FORTRAN Vv MAIN 92860=13316 1726
92ub=160193 “FFTNG FORTRAN IV SEGMENT F 92¢60-13316 1726
G2uhn=16194 APFTNA FORTRAN IV SEGLMENT ¢ 92060-13316 1726
9226N=1HP9S L1FTNG FORTRAN IV SEGMENT | 92¢6U=-13316 1726
92n6n=16v98 X2FTNG FURTRAN IV SEGMENT 2 92860=13316 1726
92vEN=16197 LIFTNG FORTRAN IV SFGMENT 3 92069~13316 1726
9enbin=1n049n 4aFTN4 FURTRAN IV SEGMENT 4 92062=1331¢6 1726
Cenor=18048 ALUPGAT UPDATE TRANSFER FILE 92260=1331¢ 1740%
S2ubR=180a7 8PrM 1S PACK NDISK TRANSFER FILEF S2v6P«13310 1631
F2ubU=1kNYy KANIE RTF=111 792n GFATHER ANSW FILE 92060=-13314 1726
920 bitelnnh] &BIAF R RTE=I11 vh/2u GFATHER ANS FILF 9206KM=13314 1726
gerihd=1hApBb AMSAFD FLEXIbBLE 01SC BACKURP UTILLITY Y2P62=-1330Y 174p
Q220 2=1h0u1 ADVRZ3 RTE 767¢ 9T, MAG, TaPr LRIVER 92762=13304 A
JeYNA=ROL xo2uvayr RTF 929vad DKIVER WITHANT [iMs “o2u62=-133022 1726
32980 =163 4d.Va7 RTE QpSvivds DRIVER wlThH uMs Y2eb2-13302 1643

34

SOFTWARE MODULE NUMBERS: 92062A LEVEL 1740 (RTE IlI)

BULLETINS

PAPER TAPE MODULE DESCRIPTION CARTRIDGE DATE COOE
BY601=-16021 LUVRk1® RTE 7261A DRIVER 92062~13304 A
12732~-16201 XDVR33 FLEXIBLE DISC DRIVER 92062-13304 1726
20747 =640) ADVRIR RTE FIXEQ HEAD DISC LKIVER 92062+=13305 [
20838=60041 XCAL LW CAL, PLOTTER DRIVER 92¢62+-13302 B
2031 v=6101 XCALIB CAL, PLOTTER LIBRARY G20n62~13302 9
29117=6v- 499 %D0Vk24 RTE 797» 77 MaG, TAPE ORTIVER 92n62=-13305 o]
29013=6n0111 L0VRI L RTE 7994A DISC DRIVER 92u62-13305 171@
2992b=6yN2 LDV 2 RTE 2767A DRIVER 92062-13303 A
29429=6uNA1 ADVROAWK RTE TTY/PUNCH/PHOTO READEK 92062-133m2 1740w
29vdvi=bitavl IDVRYL RTE 2892A CARD READER DRIVER 92062=-13303 1712
S931n=10Rv2 X10v4a7 RTE WP=IB wITHOUT SKG 92162-13304 1726
59414=16043 X2bva7 RTE HP=IB WITH SRU 92162-13304 1726
5931¢=-160v4 LHPID HP=1B DEVICE SUBROUTINE 92062=13304 171e
59310=16aU% LSHG, P SRO,P TRAP UTILITY 92162=-134024 171e
72AMB=6p Ny %10vie COMP, 721¢@A PLOTTER DRIVER 92062-13302 A
7200Q=brinil X20via MIN, COMP, 701&A FLOTER DRIVE 92062=13302 A
gl2vu=16p01 *LDVAL3 912vva DRIVER Y2¢62~13303 1648
91z2vi=tbnne %*TVviLIB 912@AA VIDEO MONITOK LIBRARY 92062-13303 1648
9120u=167y4 LTVVER Q12vvA TV INTERFACE VERIFIER 92062-13303 1648
Cuni=16n20 4Dval12 2607 /1@2/13/714/717/718 DRIVER 92062=-13303 1534
92R01=16027 $40Vi% RTE 2644/74% DRIVER 92062-13302 1740+
2uni=1b0¢8 XOCVES RTE 26424 DRIVER 92062=-133@2 1740«
920a1=16£35 ADVAULD RTE DRIVER 264X MODEM 92062-13302 1740
92u60=10031 ADVR32 RTE 79v5a DISC DRIVER 92n62=13995 A
922v2=-160ru1 XDVR23 RTE 797¢ 9T, MAG. TAPE DRIVER 92¥62-13304 A
Q290P=18062 220va7 RTE G290¢PA DRIVER wITHOUT DFS 92e62-13302 1643
Y2900 =1610J %30bva7 RTE 929urd DRIVER wIThH LMS Y2062-13302 1643

SOFTWARE MODULE NUMBERS: 92064A 92064-13301 RTE-MI
OPTIONS 20 & 40 LEVEL 1740 (RTE-M) 92064-13302 RTE-MII
92064-13303 RTE-MIN

The following modules are unique in that they are available
on Flexible disc as well as Paper Tape and Mini-Cartridge.

STRUCTURE

The RTE-M operating system is divided into three groups.
Refer to the RTE-M Programmer's Reference Manual (part
no. 92064-90002) for a description of the operating systems.

Within this list the modules that correspond with each operat-
ing system are described as MI, Mli, or MIII.

CARTRIDGE TAPES

There are three cartridge tapes that contain the three operat-
ing systems. The part numbers of these cartridge tapes and
the corresponding operating systems follow:

Modules that correspond with two or all three operating
systems and are contained on more than one cartridge tape
contain (MI), (MIl), or (MIll) in their description.

Modules that do not directly relate to the operating systems
are contained on the other cartridge tapes.

FLEXIBLE DISCS

There are two flexible discs referred to as GEN DISC and
APP DISC. The GEN DISC (92064-13401) contains all the
software that can be loaded at generation. The APP DISC
(92064-13402) contains all the application software that can
be loaded on-line. As with the cartridge tapes, some of the
modules can be found on both flexible discs.

35

BULLETINS

The Generation disc contains the following: e Certain relocatable system software
e Certain user programs

Off-line generator

All operating system software

I/O drivers

Modules that appear on both flexible discs contain
(GEN DISC) or (APP DISC) in their description.

Certain HP user programs

The Applications disc contains the following:

e HP applications programs — Assembler

FORTRAN compiler

Editor

Cross reference
program

SOFTWARE MODULE NUMBERS: 92064A OPTIONS 20 & 40 LEVEL 1740 (RTE-M)

PAPER TAPE MOBULE DESCRIPTIUN CARTRIDGE FLEXIBLE DISC | DATE CODE
A9601=16M21 XDVR1S® RTE 7261A CAR[) READER DRIVER 92062~=13304 9206413421 A
12732=16001 *0VRA3 FLEXIBLE DISC DRIVER 92062-13304 | 92064=13401 1650
20BWB=RUAN XCALL1Y RTE PLOTTER DRIVER 92062=13302 | 92v64=13401)
2¢81R=60101 ACALIB CAL, PLOTTEW | IBRARY 92¢62-13302 | 920641340 C
26153=6unuv1 XFF N RTE/UUS FURTRAN FURMATTER Y2060-13303 | 9206413402 C
24153~Fpnut XFF (N RTE/DOS FORTRAN FGRMATTER 92060=133023 | 92064=134¥1 c
243p6=6uRatl XDECAR DUSM STRING ARITH PK 92”62-13303 A
24998~16001 %XRLTB] RTE/DOS LIRRARY 92060=13302 | 92064=13401 1740n
2499R8=16001 %RLIBY RTE/DOS LIBKARY 9206p=13302 | 92064=13402 1740w
24998=16001 ARLTE? RTE/DDS LIBRARY 92060=133n2 | 92064=13402 1740
24998-16001 ARLIB2 RTE/DOS LIBRARY 92¢6A=133R2 | 92064=-13401 1740%
24998~16002 ZFFa N FURTRAN IV FORMATTER $2060=-13303 | 9206413402 1624
24998=16002 XFFa,N FORTRAN IV FORMATTER 92060=133a3 | 92064=-13401 1624
29¢28=fuhun2 ADVR12 RTE 2767A DRIVER 92062=13323 92064=13401 A
2vr29=6unpl ADVREW RTE TTY/PUNCH/PHOTO READER 92062=-13302 | 92064=13401 1740%
2943P=60R0tl XDVR11 RTE 2892A CARD READER DRIVER 92062=13303 | 9206413401 1710
5931v=16002 xX10vaz HP=IB WITHOUT SYSTEM REGQUEST 206213304 | 9206413401 1710
59311n=162a3 %20V37 HP=I8 WITH SYSTEM REGUEST 92062=13304 | 920¥84=13401 1710
59310=160v4 AHPIb HP=IB RTE UTILITY 92M62=-13304 | 9206413401 1710
5931116005 %ZSRQ,.P SRO,P TRAP UTILITY 9206213304 | 92064=13401 1710
720u8=6unul L1LVIN COMP, 721vA PLOTTER DKIVER 92¢62-13302 | 9206413401 A
72039=-6p021 %20V1in MIN, COMP, 721nA PLOTTER DRIVE | 92¢62-13322 | 92064=13401 A
Q12ov=106001 XDVAL3 G1200 TV INTERFACE URJIVER §2062-133a3 | 9208413421 1648
912UR=16062 XTVLIB VIDEO MONITOR L IHRARY G2062=13303 | 92064-13401 1648
J12un=16004 XTVVER TV INFT VERIF 92062=13303 | 92064-13401 1648
920Y1=16020 %0Va12 2607/1P/13/14/17/18 DRIVER §2062-13303 | 92064=13401 1534
92001=16m27 %X4DViS RTE 2644/45 DRIVER V2P62=13302 | 92064=13441 1740%
92r@1=16m28 2BLVES | RTE 264MA DRIVER 92062=-13302 | 92064=-134¢1 1740%
92031=16035 %XDVA@5 | RTE DRIVER 264X MODEM §2062-13302 | 92064=1349) 17 49w
02060=-16052 %XKEYS SOFT KEY UTILITY 92064-13304 | 9206413402 1707
9206B=16253 XKYDMP SOFY KEY DUMP UTILITY P2064~13304 | 92064=13402 17v7
92068=16092 %FTNG FORTKAN IV MAIN 92064=13402 1726
92062=16093 XFETNG RTE FORTRAN lv SEG ID SUB 92064=13402 1726
92P6n=16094 %0FTNe | FORTRAN IV SEGMENT @ 92064=13442 1726
92060-16A95 X1FTN4 | FORTRAN IV SEGMENT 1 92064=13442 17286
92060=16096 X2FTN4 FORTRAN IV SEGMENT 2 92064-13402 1726
92060=-16097 X3FTNG FORTRAN IV SEGMENT 3 92064~13402 1726
92062=16098 %4FTNG | FORTRAN IV SEGMENT 4 92064=13402 1726
92:64~12005 1FMPC CARTRIDGE FMP/FMPCR (L1B) 92P64=13306 | 92064-13401 1749
92064~12006 XFMPF FLEX DISC FMGR LIB (GEN DISC) 92064=13401 1726
92064=-12006 XFMPF FLEX DISC FMGR LIB (APP DISC) 92064=-13402 1726
S2064=12007 XCLIBM | RTE COMPILER LIBRARY 92064-13402 1726
9206416001 XMSY1 MI OPERATING SYSTEM 92864213301 | 92064=-1340] 1726
9206416002 xMSY2 MI1 OPERATING SYSTEM 92064=13302 | 92064-13401 1726
92064=16003 XM8Y3 MII1 OPERATING SYSTEM 9206413383 | 92064=-1342) 1720
92@864-160085 XMBU M1 BUFFERING 9206413301 | 92064=13441 1659

36

(Continued)

BULLETINS

SOFTWARE MODULE NUMBERS: 92064A OPTIONS 20 & 40 LEVEL 1740 (RTE-M)

PAPER TaPE MODULE | NESCRIPTIOUN CARTRIDGE FLEXIBLE DISC | NaTe covE
92064~16006 AMMP MI SCHEDULING OPTION G2¥64=13301 92264=13401 165v
92464-16008 IMTI TIMER OPTION (MID) 92064+13302 92ubdm13a0y 165¢
92064~-16008 IMTI TIMER OPTION (MIII) 92064=13323 | 920v64=13441 1650
92u64-16008 XMTT TIMER OPTION (MI) 92464-13301 92464=13401 1650
92064~162¢9 XMTS TIME SCHEQULING OPTION (MITI) 92064=13303 | 92u64-134m 1650
9206416029 AMTS TIME SCHEDULING ODPTINN (MII) 92P64~13302 | 92m64~1340) 1650
92084=16A19 IMTS TIME SCHEDULING OPTION (MI) 92064-13301 92264213401 1650
9206416210 XMOP APERATOR COMMAND OPTION (MIT1) | 920@64=-13323 92064-13401 1650
92064=16010 AMOP OPERATOR COMMAND OPTION (MII) 92062=13302 | v2v64=1340) 1650
92064=16010 XMOP DPERATOR COMMAND OPTION (M]) 92064-133@1 920641340 1650
92064=16011 AMCL CLASS I/D DPTION (MII) 92064=13302 9206413401 1725
92064=16012 XMAP MI/I1 ABSULUTE PROGRAM LOADER Y2064=13305 92064=13441 1726
9206416013 AMDMLE | DUMMY LIBRARY (MII) 92064=13302 92064=13401 1650
92064-16213 IMDMLB | DUMMY LIBRARY (MI) 92064=13301 92064=13401 1656
92064=16@13. | XMDMLB | DUMMY LIBRARY (MIII) 92064-13303 92064-13401 1654
92064=16015 XMCLY CLASS 1/0 DPTION (MII1) 92064+13303 92064=1340) 1726
92064=16716 AMAPY MIII ABSOLUTE PROGRAM LOUADER 92064=13325 92064=13401 1726
9206416017 XFMGCR | CARTRIDGE FILE MANAGER 92064-13305 9206413401 1709
92064~16018 XDRC CARTRINGE DIR HAN PROGRAM 92064=13304 P2064-1340] 1650
9206416019 XTBLCR | CARTRIDGE DIRECTORY TABLES 92064-13304 92064=1340) 165¢
92064=16021 XDRC1 Ml CARTRIDGE DIRECTORY SUBR 9206413306 92064-13401 165¢
92064-16022 XRTMGN | SYSTEM GENERATOR 92064-13305 92064=13401 1726
92264-16223 XKTMLD | RELOCATING LOADER (GEN DISC) 9206413305 92064-1344) 1726
92064-16023 XRIMLO | RELOCATING LOAPER (APP DISC) Yp064-13305 92064-13402 1726
92064-316724 XKTMSC | LOADER SUB CONTROL (aPP DISC) 92064-13305 92064=13402 1726
92064-16024 XRTMSC | LOADER SUB CONTROL (GEN DISC) 9206413305 92084=13401 1726
92064-16025 XMEDIT | EDITOR : 92064=13402 1703
9206416026 XMASM6 | CROSS REFERENCE SEGMENT P2064m13402 1650
92064=16027 XMFPF MI/11 POWER FAIL 92064-13304 92064~134081 1650
92664-16029 IMPF3 MIII POWER FAIL 92464-13304 92084~13401 1650
92064~16030 XMAUTO | AUTOR REL 9206413304 92064~13401 1650
92064=16031 AMRN RESOURCE NUMBER MNGR (MITI) 9206413303 92064=134021 1650
92064-16031 AMRN RESOURCE NUMBER MANAGER (MII) 92064=13302 92084-13401 1650
92064-16032 XONMTM | MULTI TERMINAL MONITOR (APP D) | 92064=13305 92064-13402 1650
92064-16032 XONMTM | MULTT TERMINAL MONITOR (GEN D) | 92@64=-13325 92064-13401 1652
920864=-16033 IMCGEN | ABSOLUTE CARTRIDGE GENERATOR 92064=13307 1726
92064~16034 %XSGPRP | SEGMENT PROGRAM PREP 9206413402 1650
9206416035 XMPRMP | PROMPT (MTM) 92064-13305 92064=13401 1650
92064=-16036 XMRSPN | RESPONSE (MTM) 92064-13305 92064=1340 1650
92064=16040 XMASHMA | ASSEMBLER MAIN CONTROL 92064e13422 1650
92064=16041 XMASM1 | ASSEMBLER SEGMENT 1 90064=13402 1650
92064-16042 XMASM2 | ASSEMHLER SEGMENT 2 92064=13402 1650
92064=16043 XMASM3 | ASSEMBLER SEGMENT 3 92064=134¢2 1650
9206416244 XMASM4 | ASSEMBLER SEGMENT 4 92064-13402 1650
9206416045 XMFTNG | FORTRAN MAIN CONTHOL 92064=13402 1650
9206416046 XMFTN1 | FORTRAN SEGMENT 1 9206413402 1650

37

- BULLETINS

(Continued)
SOFTWARE MODULE NUMBERS: 92064A OPTIONS 20 & 40 LEVEL 1740 (RTE-M)

PAPER TAPE MOLULE DESCRIPTION CARTRIDGE FLEXIBLE DISC NATE CODE
92064=16047 AMFNT2 FORTRAN SEGMEANT ¢ 92464=13402 1652
9206416050 XMASHMS ASSEMBLER SEGMENT D 92064=1348162 165¢
92Rr64=16A01 XMXRF @ CROSS REFERENCE MAIN 92064=13402 165¢
92264=16054 ANIRD CARTRINGE DIRECTOKNY READ G2vFa~13350a | 920u64=13401 165¢
92064=16055% XFMGF & FLEX DISC FILE MNGR (LEN (CISC) 92064=13411 1769
92R64=~16855% XEMGF @ FLEX DISC FILE MNGR (aPP DISC) edB4a=13802 1709
92064=16456 XDKF F DISC DIRECT PROG (APP DISC) Yy2u64=134u2 1652
92064-16056 LOrF F NDISC DIRKECT PROG (GEN DISCH Y20v6d=1344) 165¢
92064=16757 LTBLFP FLEXIBLE DISC NIRECT TABLES 92064=1340) 1709
920A64=16160n ADKF] F DISC DINFECTORY SUM (APP D) 920648m 13407 165¢
92A64=16R60 XNKF Y F DISC DIRECTORY SUB (GEN N) 92¥64=13401 1659
92864=16075 IMFGEN ABSOLUTE FLEXIHLE DISC SYSTem ¥2464m1340] 1726
92bd=16M8B0 ASTRTM RTE=M SYSTEM START=UP 9206413504 | Y2464=13441 1749
92064=16081 IMSYLR RTE=M SYSTEM L IBRARY (GEN DISC Y2664=13306 Y2r64=134u11 17vy
92P64=~16081 XMSYLR RT1E=M SYSTEM LIBRARY (APP DJISC G2¢64=1330h | 92464=]13400% 1709
Y2ub4=16086 AMSAFD FLEXIBLE DISC BACKUR uTILITY Y20EN=1330Y | YUbL4=13402 1740
92064-18059 &TBLCR CARTRIDGE DIRECTORY ThLS SNURL §2P64-13306 92264=13402 1650
g2p6d4=~18126 AMHELP EQITOK WELP FILE SOURCE Y2nba=134uy 1650
92064=~18141 &MAUTO AUTOR SOURCE Y2¢EA=1330F | Y2H64=134¢2 165¢
92064-18171 LTBLFP FLEXIBLE DISC DIRECTORY SDURCE Y24K84=13407 1709
92202=160K1 XDVR2J RTE 797¢v 9T, MAG, TAPE DR[VER 92062135304 | 9/ 4Rd=1340] A
92900~16VR2 xebvaz RTE 929044 DRIVER WITROUT NMS 92vhK2=1330n2 Yevba=134ny 1643
92900~16003 x30vaz RTE 42920a DRIVER WITH uMS Y2v62=13302 | wenhd=138ap 16543

38

TRAINING SCHEDULE

The schedule for customer training courses on Data Sys-
tems Division products has been expanded to include
courses offered at our European training centers. Listed
below are courses offered in the U.S. and in Europe during
the period May 1977 through August 1977.

You can also obtain a copy of the training schedule from
your local HP sales office. A European course schedule is
available through the sales offices in Europe; a U.S.
schedule through U.S. sales offices.

*Prices quoted are for courses at the two U.S. training cen-
ters only. For prices of courses at European training centers
please consult your local HP Sales Office.

BULLETINS

REGISTRATION

Requests for enrollment in any of the above courses should
be made through your local HP representative. He will sup-
ply the Training Registrar at the appropriate location with the
course number, dates, and requested motel reservations.
Enroliments are acknowledged by a written confirmation in-
dicating the Training Course, time of class, location and
accommodations reserved.

ACCOMMODATIONS

Students provide their own transportation, meals and lodg-
ing. The Training Registrar will be pleased to assist in secur-
ing motel reservations at the time of registration.

CANCELLATIONS

In the event you are unable to attend a class for which you
are registered please notify the Training Center Registrar
immediately in order that we may offer your seat to another
student.

TRAINING CENTER ADDRESSES

Cupertino Boblingen

Milan

11000 Wolfe Road
Cupertino, California 95014
(408) 257-7000

Sunnyvale

974 East Arques
Sunnyvale, California

Rockville

4 Choke Cherry Road
Rockville, Maryland 20850
(301) 948-6370

Boise

P.O. Box 15

15 N. Phillippi Street
Boise, Idaho 83707
(208) 376-6000
TWX: 910-970-5784

Kundenschulung
Herrenbergerstrasse 110
D-7030 Boblingen, Wurttemberg
Tel: (07031) 667-1

Telex: 07265739

Cable: HEPAG

Winnersh

King Street Lane
GB-Winnersh, Wokingham
Berks RG11 5 AR

Tel: Wokingham 784774
Cable: Hewpie London
Telex: 847178 9

Grenoble
5, avenue Raymond-Chanas
38320 Eybens

Tel: (76) 25-81-41
Telex: 980124

39

Via Amerigo Vespucci, 2
1-20124 Milan

Tel: (2) 62 51

Cable: HEWPACKIT Milano
Telex: 32046

Madrid

Jerez No 3
E-Madrid 16
Tel: (1) 458 26 00
Telex: 23515 hpe

Stockholm

Enighetsvagen 1-3, Fack
S-161 20 Bromma 20
Tel: (08) 730 05 50
Cable: MEASUREMENTS
Stockholm
Telex: 10721

BULLETINS

TITLE TRAINING COURSE RATES AND CENTER LOCATION
Course - Amsterdam/
Number Length Price Cupertino Sunnyvale Rockville Boise Boblingen Winnersh Grenoble Milan Madrid Stockholm Brus.
01ETC RTE /It Driver Nov 30
Writing Course
.
3 days 300
22940A 2100 Maint. Nov 7
Dec 5
10 days | $1000
22941A 21MX Maint. Nov 28 Dec 5
5 days l 500
22942A 7900 Maint. Nov 28 Nov 28
5 days 500
22943A 7970B Maint. Nov 14
5 days ’ 600
22944A 7970E Maint. Nov 7
5 days 600
22945A 7905 Maint. Nov 7 Nov 14
Dec 5
5 days l 500 Dec 12
22950A 2100 Ser. Assm. Nov 7 Nov 7 Nov 21 Dec 12 Nov 14 Nov 28
Dec 5 Dec 5 Jan 30 Jan 23
5 days 500
22965B RTE-I/In Nov 7 Nov 7 Nov 7 Nov 14 Nov 21 Nov 28 Dec 5
Dec 5 Nov 14 Nov 28 Nov 21 Dec 5 Dec 19 Dec 12
10 days 1000 Nov 28 Dec 5 Jan 9
Dec 5 Jan 9 Dec 5
(Course includes Dec 12 Jan 16
RTE-Vill operat- Dec 19
ing system, batch
spool monitor and
file manager.)
22969A Distr. Sys. Nov 28 Nov 28
5 days 500
22977A Image/DBMS Dec 12 Jan 16 Jan g
1000
5 days 500
22980B HPIB Nov 28 Nov 7

Minicomputer
Environment

4 days 400

40

BULLETIN

TITLE TRAINING COURSE RATES AND CENTER LOCATION
ok
Course e Amsterdam/
Number Length Price Cupertino Sunnyvale Rockville Boise Bobtingen Winnersh Grenoble Milan Madrid Stockholm Brus.
22983A 21MX E-Micro- Nov 14,
programming Dec 12
5 days I 500
22984A 7920 Maint. Nov 14
5 days 500
22985A RTE-M Nov 7 Nov 14 Dec 12
Dec 5
5 days 500

*NOTE: Dates within brackets are starting dates tor week 1 and week 2 of the RTE course. In some cases there is a break between the two weeks of the class. Course 22977A, IMAGE/DBMS 1000
replaces 22953A (2100 IMAGE); the new class adds additional material and extends the training from 3 to 5 days.

***We have not yet received dates for Madrid or Amsterdam/Brus.

1

e —a - e s mam e e e e %

HEWLETT-PACKARD
COMPUTER SYSTEMS COMMUNICATOR ORDER FORM

Please Print:

Name Title
Company
Street
City State Zip Code
Country
(J HP Employee Account Number Location Code
[0 DIRECT SUBSCRIPTION List Extended Total
Part No. Description Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 $48.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6111
5951-6112 COMMUNICATOR 2000 25.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6112
5951-6113 COMMUNICATOR 3000 48.00
(if quantity is greater than 1 discount is 40%)
TOTAL DOLLARS for 5951-6113
(O BACK ISSUE ORDER FORM (cash only in U.S. dollars)
(subject to availability) Issue List Extended Total
Part No. Description No. Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 $10.00
10.00
10.00
TOTAL DOLLARS
5951-6112 COMMUNICATOR 2000 $ 5.00
5.00
5.00
TOTAL DOLLARS
5951-6113 COMMUNICATOR 3000 %1000
10.00
10.00

TOTAL DOLLARS
TOTAL ORDER DOLLAR AMOUNT

(J SERVICE CONTRACT CUSTOMERS

You wili receive one copy of either COMMUNICATOR 1000,
2000, or 3000 as part of your contract. Indicate additional
copies below and have your local office forward. Billing will
be included in normal contract invoices.

Number of additional copies

[FOR HP USE ONLY]

CONTRACT KEY

5951-6111
5951-6112
5951-6113

Approved

Number of additional copies
Number of additional copies
Number of additional copies

HEWLETT-PACKARD
COMMUNICATOR SUBSCRIPTION AND ORDER INFORMATION

The Computer Systems COMMUNICATORS are bi-monthly systems support publications available from Hewlett-Packard
on an annual (6 issues) subscription.

The following instructions are for customers who do not have Software Service Contracts.

1. Complete name and address portion of order form.
2. For new direct subscriptions {see sample below):
a. Indicate which COMMUNICATOR publication{s) you wish to receive.
Enter number of copies per issue under Qty column,
Extend dollars (quantity x list price) in Extended Dollars column,
Enter discount dollars on line under Extended Dollars. (If quantity is greater than 1 you are entitled to a 40% discount.*}
Enter Total Dollars (subtract discount dollars from Extended List Price dollars).

o0 0O

*To qualify for discount all copies of publications must be mailed to same name and address and ordered at the same time.

SAMPLE

DIRECT SUBSCRIPTION List Extended Total

Part No. Description Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 3 $48.00 #/44.00

(if quantity is greater than 1 discount is 40%) 57 60

TOTAL DOLLARS for 5951-6111 8 86-40

3. To order back issues (see sample below):

Indicate which publication you are ordering.
Indicate which issue number you want.
Enter number of copies per issue.

Extend dollars for each issue.

. Enter total dollars for back issues ordered.

coo0 o

All orders for back issues of the COMMUNICATORS are cash only orders {U.S. dollars only) and are subject to avaitability.

SAMPLE
[x] BACK ISSUE ORDER FORM (cash only in U.S. dollars)

(subject to availability) Issue List Extended Total
Part No. Description No. Qty Price Dollars Dollars
5951-6111 COMMUNICATOR 1000 XX / $10.00 #1000

XX 2 10.00 20-00

10.00
TOTAL DOLLARS ¥30.00

4. Domestic Customers: Mail the order form with your U.S. Company Purchase Order or check {payable to Hewlett-
Packard Co.) to:
HEWLETT-PACKARD COMPANY
Computer Systems COMMUNICATOR
P.0O. Box 61809
Sunnyvale, CA 94088
U.S.A.

5. International Customers: Order by part number through your local Hewlett-Packard Sales Office.

— s e o e —— — — ——— — — — — —— — — — — —— —— ——

Please photocopy this order form if ’h

D .)
you do not want to cut the page off. HEWLETT PACKAR NOTE: No direct mail order can be
You will automatically receive a new shipped outside the United States.
order form with your order. CONTRIBUTED SOFTWARE

Direct Mail Order Form

Please Print:

Name Title

Company

Street

City State Zip Code
Country

Item Part a D ioti List Price Extended
No. No. ty. escription Each Total

Sub-total
*Tax is verified by computer according to your ZIP CODE. If no sales tax is

added, your state exemption number must be provided: #
If not, your order may have to be returned. Your State & Local
Sales Taxes”

Domestic Customers: Cash required on all orders less than $50.00. Mail the order
form with your check or money order (payable to Hewlett- Handling Charge 1 50
Packard Co.) or your U.S. Company Purchase Order to:

TOTAL

HEWLETT-PACKARD COMPANY
Contributed Software

P.O. Box 61809
Sunnyvale, CA 94088

International Customers: Order through your local Hewlett-Packard Sales office. No direct mail order can be shipped
outside the United States.

All prices domestic U.S.A. only. Prices are subject to change without notice.

Ordering Information

ORDERING INFORMATION FOR LOCUS
CONTRIBUTED SOFTWARE

Programs are available individually in source language on either paper tape, magnetic tape, or
cassettes as indicated in the abstracts.

To order a particular program, it is necessary to specify the program identification number, together
with an option number which indicates the type of product required. The program identification
number with the option number composes the ordering number.
For example:

22113A-K01

The different options are:

K01 — Source paper tape and documentation
K21 — Magnetic tapes and documentation

NOTE

Specify 800 BPI or 1600 BPI Magnetic tape.

D00 — Documentation

Not all options are available for all programs.

Ten-digit numbers do not require additional option numbers such as K01, K21, etc. The 10-digit
number automatically indicates the option or media ordered.

For example:

22681-18901 — The digits 189 indicate source paper tape plus documentation.

22681-10901 — The digits 109 indicate source magnetic tape plus documentation (800 BPI
magnetic tape)

22681-11901 — The digits 119 indicate source magnetic tape plus documentation (1600
BPI magnetic tape)

22681-13301 — The digits 133 indicate source cassettes plus documentation

Only those options listed in each abstract are available.
Refer to the Price List for prices and correct order numbers.

Hewlett-Packard offers no warranty, expressed or implied and assumes no responsibility in
connection with the program material listed.

R s . e e e rom e e o —— ——. e — g — —— s, o— G amm— — o — ———

- —— — ——— — — —— ——— —t ———— ——————— b = - ——— = —

-— o ——— —— ——

HEWLETT-PACKARD
LOCUS CONTRIBUTED SOFTWARE CATALOG
DIRECT MAIL ORDER FORM

Please Print:
Name Title
Company
Street
City State Zip Code
Country
] HP Employee Account Number Location Code
List Price Extended
Part Number Description Qty. Each Total
22000-90099 Locus Contributed Software Catalog $15.00
*If no sales tax is added, your state exemption number must Your State & Local
be provided: # Sales Taxes®
If not, your order may have to be returned. Handiing Charge 1.50

Domestic Customers: Mail the order form with your check or

TOTAL

money order (payable to Hewlett-Packard Co.) to:

HEWLETT-PACKARD COMPANY
LOCUS CATALOG

P.O. Box 61809

Sunnyvale, CA 94088

International Customers: Order by part number through your local Hewlett-Packard Sales Office.

NOTE: No direct mail order can be shipped outside the United States. All prices domestic U.S.A. only. Prices are
subject to change without notice.

- amat —— ————— - - + — — — o — — — — — — —— — — — — — — — — — — = — ——— . ——— — —— — — . ——— — t— ——— — — —x — — i —— —— — — — — — ——

— e e —— . — — ——— — — — — — — —— —— — — s ——— —

COMPUTER SYSTEMS COMMUNICATOR
NOT TO BE USED FOR ORDERING COMMUNICATOR SUBSCRIPTIONS

HEWLETTW PACKARD
Direct Mail
) rder Form
SHIP TO. Parts and Supplies Order Fo
NAME
CUSTOMER
COMPANY REFERENCE =
STREET TAXABLE ?
CITY STATE ZIP CODE
Item |[Check Part Qty. Description List Price Extended
No. | Digit No. Each Total
Special Instructions
Sub-total
"Tax is verified by computer according to your ZIP CODE. If no sales tax is Your State & Local
added, your state exemption number must be provided: = _____ | Sales Taxes”
If not, your order may have 1o be returned.
Check or Money Order, made payable to Hewlett-Packard Handling Charge 1|50
Company, must accompany order.
)) TOTAL
When completed, please mail this form with payment to:
HEWLETT-PACKARD COMPANY
Mail Order Department Phone: {415) 968-9200
P.O. Drawer #20
Mountain View, CA 94043
Most orders are shipped within 24 hours of receipt. Shipments to California, Oregon and Washington will be made via UPS. Other
shipments will be sent Air Parcel Post, with the exception that shipments over 25 pounds will be made via truck. No Direct Mail
Order can be shipped outside the U.S.

o — v — — —— a . G — . —— ——— —— - f— —— —— ot — —— A e v W 4 b b — P R e ¢ N M e e e ¢ o s o % M W s W R 4w om om s ko cmn — e . ek A e

